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1

Introduction

This thesis consists of three self-contained essays in microeconomic theory. The
common theme of all chapters is the analysis of collective decision problems in
which efficient decisions depend on information that is privately held by indi-
viduals. Chapter 2 studies optimal provision of public goods. In Chapter 3 we
propose a class of mechanisms for coupled binary decision problems. Chapter
4 studies efficient information aggregation in a setting where individuals have
both private preferences and private information that is relevant for everyone.

The theory of mechanism design provides a framework to derive optimal
decision rules when strategic individuals hold private information. The goal is
to aggregate private preferences toward a single joint decision while maximiz-
ing an underlying objective such as overall welfare. To prevent that individuals
misreport their private preferences the mechanism must provide the right incen-
tives. For the general setting without money, the Gibbard (1973) - Satterthwaite
(1975) Theorem shows that all incentive compatible mechanisms are dictatorial
if there are more than two alternatives over which all preference orderings are
possible.

The introduction of money puts more structure on the theoretical problem
and might help to provide incentives. For example, requiring only incentive con-
straints, the Vickrey (1961) - Clarke (1971) - Groves (1973) mechanism imple-
ments efficient decisions. However, the benefit of using money decreases when
more constraints are imposed on a mechanism. Participation constraints and the
exclusion of external payments can prevent efficient implementation as demon-
strated by Myerson and Satterthwaite (1983) for example.

The research questions of Chapter 2 and 3 lie in between settings with and
without money. The public good provision setting in Chapter 2 allows for mon-
etary transfers. However, we show that upon imposing incentive, participation
and budget balance constraints, money cannot be used to fine-tune incentives
anymore. This makes the problem equivalent to one without monetary trans-
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fers. In the derivation of the optimal mechanism, we apply the Gibbard (1973)
- Satterthwaite (1975) Theorem to characterize all mechanisms that fulfill the
constraints.

The imposed constraints in Chapter 2 prevent using money to provide incen-
tives in the public good setting. In other contexts, monetary transfers are ruled
out by assumption: for example, there is a consensus that individuals’ impact on
a voting outcome should not depend on their material wealth. In Chapter 3, we
study mechanisms for coupled binary decision problems without allowing for
monetary transfers. The Gibbard (1973) - Satterthwaite (1975) Theorem does
not apply because the structure of the problem restricts the set of preference
orderings over outcomes, and we work with a relaxed equilibrium concept. This
allows us to propose a mechanism that improves in terms of welfare on simple
mechanisms such as dictatorship or separate majority voting.

Chapter 2 and 3 share a common conceptual idea: coupling several unrelated
decision problems can help to increase efficiency. In Chapter 2, which is joint
work with Felix Bierbrauer, we show that coupling the decisions on several public
projects facilitates public good provision. Different public goods can be bundled
together if there is enough capacity, i.e. resources to pay for all the public goods
in the bundle. The analysis focuses on the all-or-nothing mechanism: expand
provision as much as resources allow if no one vetoes - otherwise stick to the
status quo. Individuals might prefer the bundle over the status quo even if they
dislike particular projects. In fact, we show that the probability of providing the
bundle of public projects converges to one as the capacity becomes unbounded.
Further, we provide conditions under which the all-or-nothing mechanism is ex-
ante welfare-maximizing - even though, ex-post, it involves an overprovision of
public goods.

Chapter 3 is joint work with Kilian Russ. We propose the class of rank-
ing mechanisms for coupled binary decisions. Conceptually, a ranking serves as
“quasi-money” that makes utility to some extent transferable between decision
problems. A ranking mechanism truthfully elicits two parts of individuals’ pri-
vate information. Individuals communicate which alternative they prefer in each
decision problem. Additionally, they report a priority ranking over decision prob-
lems by ranking each problem according to the absolute difference in utilities
between the two proposed alternatives. These rankings are then used to assign
weights to individuals’ votes in a voting mechanism. Any ranking mechanism is
thus implementable as a weighted voting procedure. We derive a closed-form
solution for the ex-ante efficient weight vector. The optimal ranking mechanism
ex-ante Pareto dominates separate majority voting for an arbitrary number of
individuals and decision problems. We extend our results to non-identical distri-
butions of preferences between individuals and across problems.

Chapter 2 and 3 emphasize the importance of voting-like mechanisms when
aggregating private preferences. Another strand of the literature discusses the
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use of voting to aggregate dispersed and privately held information on a state of
the world that is relevant for everyone. The classical work of Condorcet (1785)
shows that many individuals with independent information can jointly make
efficient decisions. Chapter 4, which is joint work with Patrick Lahr, builds on
this idea and studies efficient information aggregation when individuals have
not only private information, but also private preferences. We demonstrate that
there are more efficient ways to aggregate information than by majority vot-
ing. Under common interests, the most efficient way is a weighted voting pro-
cedure similar to that in Chapter 3. Specialization, i.e. more heterogeneously
distributed information, helps to infer the state. When allowing for private inter-
ests, complete differentiation of information qualities breaks down: individuals
who are not interested in learning the state of the world claim to have very pre-
cise information to benefit from a misconception of the state. These fake experts
prevent optimal discrimination of individuals’ information and devalue individ-
uals with actually precise information, mitigating the value of specialization. If
preferences are sufficiently heterogeneous, any differentiating weighting of in-
formation breaks down, and majority voting becomes the best way to aggregate
information.
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All or Nothing:
State Capacity and
Optimal Public Goods Provision

Joint with Felix Bierbrauer

2.1 Introduction

We study the following situation: There is a status quo with a limited provision
of public goods. Moving towards more goods being provided requires both suf-
ficient resources and sufficient political support. Our main result shows that an
increase in capacity, i.e. in resources available to finance public goods, makes it
possible to overcome all obstacles to increased public goods provision. It elim-
inates resistance by those who dislike certain public goods and it eliminates
incentives to free-ride on the contributions of others. Specifically, with suffi-
cient capacity, providing as many public goods as possible is an incentive-feasible
mechanism. We also provide conditions under which this mechanismmaximizes
expected welfare.

The paper contributes to the literature that studies public goods provision
from a mechanism design perspective. By and large, the existing literature, re-
viewed in more detail below, emphasizes the difficulties that are associated with
incentive and participation constraints. The second-best mechanisms that re-
spect these constraints typically involve an underprovision of public goods. Our
setting, by contrast, gives rise to a second-best mechanismwith an overprovision
of public goods.

The capacity to pay for public goods is a key variable in our approach. This
relates our analysis to the literature on the expansion of state capacity, origi-
nating from Besley and Persson (2009), and also to the observation, sometimes
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referred to as Wagner’s law, see Wagner (1883), that public expenditures, as
a share of GDP, have been rising in the 19th century. To be clear, an abstract
mechanism design approach cannot identify the specific political forces that
have led to increased public spending in the course of economy history. Still,
the underprovision results in the literature provoke the question whether
public goods provision subject to incentive and participation constraints can
ever be compatible with a simultaneous increase in state capacity and public
spending. Mailath and Postlewaite (1990), for instance, show that the proba-
bility of public good provision goes to zero under any such mechanism as the
number of individuals gets large. A tempting conclusion therefore is that the
imposition of participation constraints, i.e. of a requirement of unanimity in
favor of increased public good provision, makes it impossible to have increasing
expenditures. Increasing expenditures can then be reconciled only with a
violation of participation constraints or, equivalently, a use of the government’s
coercive power to finance public goods, against the will of at least some of the
people. Against this background, our analysis shows a theoretical possibility
to have increasing expenditures on public goods in the presence of partici-
pation constraints: An increasing capacity allows to bundle public goods in
such a way that moving towards increased expenditures is in everyone’s interest.

Sketch of the formal analysis. There are n individuals and there is sufficient
capacity to finance m additional public goods. Individuals have private informa-
tion on their valuations of these goods. For any one else, valuations are taken to
be iid random variables with a mean that exceeds the per capita provision cost
and which take values lower than the cost with positive probability. Thus, it is a
priori unclear which public goods should be provided.

A mechanism determines which goods are provided and also what individu-
als have to pay. Admissible mechanisms satisfy participation, incentive and bud-
get constraints. We require that all these constraints hold ex post. Thus, what-
ever the state of the economy, ex post, no individual prefers the status quo over
the outcome of the mechanism, nor does any one individual regret to have re-
vealed her preferences. In addition, the money that is collected from individuals
is exactly what is needed to cover the cost of provision. We also impose a condi-
tion of anonymity.

Mailath and Postlewaite (1990) have established an impossibility result for
the case m= 1: With many individuals, the probability of public goods provision
is close to zero under any admissible mechanism. Mailath and Postlewaite em-
ploy participation, incentive and resource constraints that are more permissive
than ours. In their analysis, participation constraints are satisfied if all individ-
uals’ expected utility under the mechanism is higher than in the status quo.
Incentive compatibility holds if a truthful revelation of preferences is a Bayes-
Nash equilibrium, rather than an ex post or dominant strategy equilibrium. Our
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analysis shows that the impossibility of public goods provision can be overcome
if many public goods are provided simultaneously. An impossibility result in
mechanism design gets stronger with weaker constraints. A possibility result
gets stronger with stronger constraints. Thus, while for the purposes of Mailath
and Postlewaite, it was a natural choice to have constraints that need to hold
only in expectation, for us, the natural choice is to have separate participation,
incentive and budget constraints for each state of the economy.1

The all-or-nothing-mechanism plays a decisive role in our analysis. This
mechanism has only two outcomes: Either the status quo prevails, or the capac-
ity for increased public goods provision is exhausted. Costs are shared equally
among individuals. Exhausting the capacity requires a consensus. As soon as one
individual opts for the status quo, the status quo stays in place. This mechanism
is obviously admissible: The veto rights ensure that participation constraints are
satisfied. If no one makes use of his veto power, then, whatever the preference
profile, the mechanism stipulates the same outcome. This limited use of infor-
mation on preferences ensures incentive compatibility.

Our first set of results shows that, under the all-or-nothing-mechanism, the
probability of the “all-outcome” is an increasing function of the capacity m and
converges to 1 as m becomes unbounded. This can be understood as a large
numbers effect. The larger the bundle, the closer are individual preferences to
the mean of the distribution from which preferences are drawn. As the mean ex-
ceeds the per capita cost, the larger the bundle the less likely is a veto. To relate
our analysis to Mailath and Postlewaite (1990) we also consider the possibility
that both the capacity m and the number of individuals n grow. If this process
is such that the ratio m

n converges to a positive constant, the limit probability of
the all-outcome is bounded away from zero.

A second set of results establishes conditions under which the all-or-nothing-
mechanism is a second-best mechanism, i.e. a mechanism that maximizes the
expected surplus over the set of admissible mechanisms. The all-or-nothing-
mechanism may not appear as a natural candidate for an optimal mechanism: It
gives rise to an overprovision of public goods as the capacity exhausting bundle
typically includes public goods with negative surplus. Since the alternatives are
only “all” and “nothing”, there is no possibility to eliminate those goods from
the bundle.

Our analysis invokes the famous impossibility result by Gibbard (1973)
and Satterthwaite (1975). According to this result, with an unrestricted
preference domain, any mechanism that is ex post incentive compatible and
allows for more than two outcomes is dictatorial. We show that, under an

1 Ex post constraints are attractive also for another reason. Mechanisms that satisfy these con-
straints are robust in the sense that they reach the intended outcome whatever the individuals’
probabilistic beliefs about the types of other individuals, see Bergemann and Morris (2005).
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ancillary assumption, this theorem applies to our setup. The implication is that
the set of admissible mechanisms becomes small: There can be at most two
outcomes. One of the two outcomes has to be the status quo. Otherwise, it
would impossible to respect participation constraints. Thus, the only degree of
freedom is the choice of the second outcome. The assumption that public goods
provision is desirable in expectation, implies that it is desirable to exhaust the
capacity to provide public goods. Thus, a second best mechanism gives a choice
between two outcomes, “all” or “nothing”.

Related Literature. The observation that bundling can alleviate inefficien-
cies due to incentive or participation constraints is due to Jackson and Sonnen-
schein (2007) and Fang and Norman (2006). Both papers focus on Bayes-Nash
equilibria and on participation constraints that need to hold at the interim stage
where individuals know their own type but still face uncertainty about the types
of others and hence about the outcome of themechanism.Moreover, both papers
show that bundling a large number of decisions allows to approximate first-best
outcomes. Our work differs in that we invoke ex post incentive and participa-
tion constraints. As a consequence, first-best outcomes cannot be reached. The
second-best outcome is the all-or-nothing-mechanism that gives rise to an over-
provision of public goods.

If bundling is not an option, second-best mechanisms give rise to an
underprovision of public goods.2 More specifically, Güth and Hellwig (1986)
show that the second-best mechanisms involve underprovision. Mailath and
Postlewaite (1990) show that, under any admissible mechanism, the probability
of public goods provision goes to zero as the number of individuals becomes
unbounded. An important assumption is that the per capita cost of provision
remains constant as additional individuals are added to the system. Hellwig
(2003), by contrast, allows for scale economies. Welfare-maximizing provision
levels then increase with the number of individuals. Still, these second-best
provision levels may fall short of first-best levels. For excludable public goods,
as shown by Norman (2004), second-best mechanisms involve use restrictions
to mitigate the distortions from incentive and participation constraints, again
with the implication that second-best provision levels are smaller than first-best
levels.

2 Some qualifications are in order. With correlated, rather than independent types first-best
outcomes can typically be reached in the presence of incentive and participation constraints, see
Crémer and McLean (1988). With independent types, and without participation constraints, first
best outcomes can typically be implemented as a Bayes-Nash equilibrium, see d’Aspremont and
Gérard-Varet (1979), but not as a dominant strategy equilibrium, see Green and Laffont (1977).
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Outlook. The following section introduces the formal framework. In Section
2.3, we show that, under the all-or-nothing-mechanism, public expenditures in-
crease in the capacity to provide public goods. Section 2.4 shows that the all-
or-nothing-mechanism is a second-best mechanism. The last section contains
concluding remarks. Formal proofs are relegated to the Appendix and to a Sup-
plement.

2.2 The Model

The set of individuals is denoted by I = {1, . . . , n}. A finite set K = {1, . . . , m} of
public projects is available. A mechanism determines which elements of K are
implemented and how the costs are shared.

The benefit that individual i realizes if project k is undertaken is denoted
by θik. We write θi = {θik}k∈K for the preference profile of i and denote the set
of possible profiles by Θi. We write θ = (θ1, . . . ,θn), refer to θ as a state of the
economy and to Θ =Πn

i=1Θi as the set of states. For any project k, individual
i privately observes θik. For any one else, θik is a random variable with cdf Fik

and density fik. We assume that these are iid across projects and individuals,
i.e. there exist F and f so that Fik = F and fik = f , for all i and k. We denote the
mean of these random variables by µ and the variance by σ2.

Let κ be the per capita cost of any one public project k. Without loss of gen-
erality, we let κ= 1. We denote by sk(θ)= 1

n

∑n
i=1 θik − 1 the per capita surplus

that would be generated if public good kwas implemented in state θ . We assume
that µ > 1, with the implication that the expected value of sk(θ) is positive. We
also assume that realizations of θik strictly smaller than 1 occur with positive
probability. Hence, negative values of sk(θ) have positive probability.

The revelation principle applies so that we can focus on direct mechanisms. A
direct mechanism is a collection of functions qk : Θ→ {0,1}, k ∈ K, that indicate,
for each state of the economy, whether public good k is provided or not. In
addition, there is a collection of functions ti : Θ→ R, i ∈ I, that specify individual
payments as a function of the state of the economy. Under such a mechanism,
the payoff of individual i in state θ is given by

ui(θ) =
∑

k∈K

θik qk(θ) − ti(θ).

We say that a direct mechanism is admissible if it satisfies incentive, participation
and budget constraints. Participation constraints hold in an ex post sense if, for
all i and θ ,

ui(θ) ≥ 0 . (2.1)
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Incentive compatibility holds provided that truth-telling is an ex post or domi-
nant strategy equilibrium, i.e. if for all i, all θ = (θi,θ−i) and all θ̂i,3

u(θi,θ−i) ≥ u(θ̂i,θ−i) . (2.2)

Budget balance requires that, for all θ ,

1
n

n
∑

i=1

ti(θ) =
m
∑

k=1

qk(θ) . (2.3)

Finally, we require a mechanism to be anonymous, i.e. a permutation of
individual types must not affect the outcome of the mechanism.

Capacity. We think of state capacity m as the part of national income that
can be used to finance public expenditures and are interested in the compar-
ative statics of state capacity: What does a change in state capacity imply for
the possibility to finance expenditures on public goods in the presence of partic-
ipation, incentive and budget constraints? To introduce state capacity into the
model, we proceed as follows: Let m be the part of any one individual’s income
that can be devoted to the financing of public goods. Thus, for any i, and any
state θ ,

ti(θ) ≤ m . (2.4)

Moreover, for notational convenience, assume that possible values of m
are multiples of κ= 1. Thus, m= 1 means that there is capacity for one pub-
lic project, m= 2 means that there is capacity for two public projects, and so on.

The all-or-nothing-mechanism. The all-or-nothing-mechanism is an admis-
sible mechanism. Under this mechanism, all public goods are provided and the
costs are shared equally unless there is an individual who prefers the status quo.
In this case, the status quo prevails. Formally: If 1

m

∑m
k=1 θjk < 1 for some j ∈ I,

then qk(θ)= 0, for all k, and ti(θ)= 0, for all i. Otherwise, qk(θ)= 1, for all k,
and ti(θ)=m, for all i.

3 In environments with private values, ex post and dominant strategy equilibria coincide, see
e.g. Bergemann and Morris (2005).
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2.3 Capacity and Expenditures on Public Goods

Let Pall(m) be the probability of the all-outcome under an all-or-noting mecha-
nism with capacity m. We will use a result from statistics to show that, under
a monotone hazard rate assumption, Pall is an increasing function. Thus, the
probability of provision is an increasing function of the capacity to provide pub-
lic goods. We also provide limit results for the case that m becomes unbounded.
The limit results hold irrespectively of whether or not the monotone hazard rate
assumption is satisfied.

These results can be related to the literatures on state capacity and Wag-
ner’s law. Under the all-or-nothing-mechanism, expected expenditures on public
goods are given by Pall(m) m. Thus, we can think of the ratio Pall(m) m

y , where y
is national income per capita, as a proxy for public expenditures as a share of
GDP. If we express state capacity m as a fraction of GDP so that m= g y, we can
write

Pall(m) m
y

= g Pall(m).

If y grows, so does m if g is held constant. With Pall an increasing function,
this implies an increasing expenditure share, in line with Wagner’s law. If Pall

converges to a positive constant as m and, possibly also n grow without bounds,
the only way to increase the expenditure share is to increase g, i.e. the fraction
of national income that can be used to finance public goods. The literature on
the expansion of state capacity focusses on this variable.

Proposition 1. Suppose that the density f is symmetric and log-concave. Then
Pall(m) increases monotonically in m.

The result of Mailath and Postlewaite (1990) applies to the case m= 1:
Pall(1) is close to zero if the number of individuals n is sufficiently large.⁴ If
the density f is both symmetric and log-concave, then the probability of the
all-outcome is larger if the capacity suffices to finance two public projects,
Pall(2)> Pall(1) and even larger if it suffices to finance three public projects and
so on.⁵ According to the Proposition 2 this sequence of probabilities converges
to 1, i.e. as m grows without bound, the probability that there is an individual
who prefers the status quo over the all-outcome vanishes.

Proposition 2. limm→∞ Pall(m)= 1.

⁴ The result of Mailath and Postlewaite (1990) applies to any admissible mechanism. Therefore
it applies, in particular, to the all-or-nothing-mechanism.

⁵ The assumption of log-concavity is satisfied by many well-known probability distributions,
including the uniform distribution, the normal distribution or the logistic distribution, see Bagnoli
and Bergstrom (2005).
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The proposition follows from a straightforward application of Chebychef’s in-
equality.⁶ Intuitively, as m grows without bound, for any individual i, 1

m

∑m
k=1 θik

converges to µ by a large numbers effect. Providing all public goods is therefore
in every one’s interest.

Suppose that m= 1 and that n is large. The per capita valuation of the public
good 1

n

∑n
i=1 θi1 is then close toµ, i.e. the surplus s1(θ) from providing the public

good is positive with probability close to one. The probability of a veto is also
close to one, however: with probability close to one there are individuals with
θi1 < 1. This observation raises the question how Pall behaves if both m and n
grow at the same time.

Proposition 3. Suppose that n= γm for γ > 0. Then limm→∞ Pall(m)> 0.

The argument in the proof of Proposition 2 is easily adapted to deal with m
and n growing at the same rate. The conclusion is weaker in that case, Pall(m)
is bounded from below by a positive constant that may be smaller than 1.⁷ The
fact that it is bounded away from zero implies that the impossibility result that
is obtained for m= 1 does not extend to this case.

2.4 On the Optimality of the All-or-Nothing Mechanism

We will now show that, under certain conditions, the all-or-noting-mechanism
is a second-best mechanism, i.e. a mechanism which maximizes the expected
surplus

E

�

1
n

n
∑

i=1

ui(θ)

�

= E

� m
∑

k=1

sk(θ) qk(θ)

�

over the set of mechanisms which satisfy the constraints in (2.1)-(2.4).
In doing so, we will treat n as fixed. As a consequence, the all-or-nothing-

mechanism is not a first-best mechanism.⁸ For any good k, the probability of the
event sk(θ)< 0 is strictly positive. As a consequence, the all-outcome includes
projects with a negative surplus with positive probability. Moreover, for large m,
this probability is close to one.

The following assumption greatly simplifies the proof that the all-or-nothing
mechanism is a second-best mechanism. We further discuss its role below.

Assumption 1. There is a fixed order for the implementation of projects. Specifi-
cally, ql(θ)= 1 implies qk(θ)= 1, for all k≤ l.

⁶ Formal proofs of Propositions 2 and 3 can be found in the Supplement.
⁷ In the Supplement, we also show that Pall(m)→ 1 if m and n do not grow at the same rate,

but m
n →∞.

⁸ As n→∞, for any k, 1
n

∑n
i=1 θik converges in probability to µ > 1. Hence, the all-outcome

converges in probability to a first best outcome.
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The assumption means that there is a natural order in which public projects
can be undertaken. Project 2 can be undertaken only after project 1 has been
implemented, project 3 can be implemented only after project 2 has been im-
plemented and so on. The set of possible public good outcomes therefore be-
comes smaller. Specifically, the possible outcomes can be represented by the set
K′ = {0,1, . . . , m} where outcome k′ ∈ K′ indicates that all public goods with an
index smaller or equal k′ are provided. The role that this assumption plays in
our proof will become clear. It ensures that all logically conceivable preferences
over the set of outcomes can be represented by an additively separable utility
function, i.e. we can satisfy a universal domain requirement without having to
introduce utility functions that allow for substitutes or complements in public
goods preferences.

Theorem 1. Suppose that the density f is symmetric and log-concave and that
Assumption 1 holds. Then, the all-or-nothing-mechanism is a second-best mecha-
nism.

In the following, we first explain the key steps in the proof of the theorem,
with formal details relegated to the Appendix. We then provide a discussion of
Assumption 1.

2.4.1 Proof of Theorem 1

The following lemma implies that, in what follows, we can limit attention to
mechanisms that involve equal cost sharing.

Lemma 1. If a direct mechanism is anonymous and satisfies the incentive con-
straints in (2.2) and the budget constraints in (2.3) then, for all i and for all θ ,
ti(θ)=

∑m
k=1 qk(θ).

The lemma and its proof in part 2.A.2 of the Appendix are of independent
interest. It is useful for the same reason as the characterization of incentive
compatibility via the envelope theorem in Bayesian mechanism design. This
characterization yields, for instance, the well-known revenue equivalence result
in auction theory. Knowing what individual payments have to look like makes
it possible to focus on allocation rules, as opposed to allocation and payment
rules. This greatly simplifies the analysis. Here, however, the argument involves
not only incentive constraints, but the interplay of incentive constraints, budget
constraints and the requirement of anonymity. The Lemma generalizes previous
results in the literature.⁹ Also note that Lemma 1 holds irrespectively of whether
or not Assumption 1 is satisfied.

⁹ Kuzmics and Steg (2017) treat the case m= 1 and focus on non-anonymous mechanisms.
Bierbrauer and Hellwig (2016), again for m= 1, invoke an additional requirement of coalition-
proofness in their proof that every admissible mechanism involves equal cost sharing.
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By Lemma 1 and Assumption 1 individual i’s preferences over the outcomes
k′ ∈ K′ of the mechanism can be represented by the utility function

ûi(θ) =
k′
∑

l=1

(θil − 1) . (2.5)

According to the impossibility result by Gibbard (1973) and Satterthwaite
(1975), with a universal domain of preferences, any incentive compatible mech-
anism that has more than two outcomes is dictatorial and therefore violates the
requirement of anonymity. By the following lemma, under Assumption 1, all
logically conceivable rankings over the set of outcomes can be represented by
utility functions that take the form in (2.5); i.e. the universal domain property
is satisfied.

Lemma 2. Let R be the set of preference relations over the set of outcomes K′. To
every �i∈ R there exists a type θi ∈ Θi so that, for any k, k′ ∈ K′, k′ �i k if and
only if

k′
∑

l=1

(θil − 1) >
k
∑

l=1

(θil − 1).

Corollary 1. Under Assumption 1, admissible mechanisms have at most two out-
comes.

The only way in which we can satisfy the individuals’ participation con-
straints is to have the status quo as one of these two outcomes. Thus, the speci-
fication of the alternative to the status quo is only one degree of freedom that is
left; i.e. the class of admissible mechanisms is of the form nothing or all public
goods with an index below k′. Let S(k′) be the expected surplus that is generated
by such amechanism. By the following Lemma, the surplus is strictly increases in
this index, with the implication that the all-or-nothing-mechanism is the optimal
mechanism.

Lemma 3. Let f be symmetric and log-concave. Then, for any k′, S(k′)< S(k′ + 1).

2.4.2 On Assumption 1

The universal domain property is needed to justify our use of the Gibbard and
Satterthwaite theorem. Assumption 1 ensures that we can satisfy this property
by focussing on a simple class of utility functions, ûi(θ)=

∑k′

l=1(θil − 1). In the
Supplement, we present an example that illustrates that, without this Assump-
tion, there are preference profiles that cannot be represented by an additively
separable utility function. If we do not impose Assumption 1, we have to con-
sider a richer class of preferences to satisfy the universal domain property. Once
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such preferences are allowed for, we can again appeal to the Gibbard and Sat-
terthwaite theorem and focus on mechanisms with at most two outcomes. With
Assumption 1, the welfare comparison of all these mechanisms becomes more
tractable.

2.5 Concluding Remarks

We have shown that bundling many public goods facilitates public goods provi-
sion in the presence of incentive and participation constraints. Additional public
goods come with additional resource requirements. Thus, sufficient state capac-
ity is necessary to reap the benefits from bundling. If bundling is not an option,
as Mailath and Postlewaite (1990) have shown, it is impossible to have positive
provision levels - unless the government uses its coercive power to collect con-
tributions from individuals who do not value the public good. This also points
to a potential drawback of deciding about every public project on a stand-alone-
basis. If the benefits from bundling remain unused, there will be an underprovi-
sion of public goods if participation constraints are respected, or, if they are not
respected, public goods provision will be unnecessarily controversial as it will
create winners and losers.



16 | 2 All or Nothing

References

Wagner, Adolph. 1883. Finanzwissenschaft. Vol. 4. 1. CF Winter. [6]
Proschan, Frank. 1965. “Peakedness of distributions of convex combinations.” Annals of

Mathematical Statistics 36 (6): 1703–6. [17]
Gibbard, Allen. 1973. “Manipulation of voting schemes: A general result.” Econometrica

41 (4): 587–601. [7, 14]
Satterthwaite, Mark A. 1975. “Strategy-proofness and Arrow’s conditions: Existence and

correspondence theorems for voting procedures and social welfare functions.” Jour-
nal of Economic Theory 10 (2): 187–217. [7, 14]

Green, Jerry, and Jean-Jacques La�ont. 1977. “Characterization of Satisfactory Mecha-
nisms for the Revelation of Preferences for Public Goods.” Econometrica 45 (2): 427–
38. [8]

d’Aspremont, Claude, and Louis-André Gérard-Varet. 1979. “Incentives and incomplete
information.” Journal of Public Economics 11 (1): 25–45. [8]

Güth, Werner, and Martin Hellwig. 1986. “The Private Supply of a Public Good.” Journal of
Economics Supplement 5: 121–59. [8]

Crémer, Jacques, and Richard McLean. 1988. “Full Extraction of the Surplus in Bayesian
and Dominant Strategy Auctions.” Econometrica 56: 1247–57. [8]

Mailath, George J., and Andrew Postlewaite. 1990. “Asymmetric information bargaining
problems with many agents.” Review of Economic Studies 57 (3): 351–67. [6–8, 11, 15]

Hellwig, Martin. 2003. “Public-Good Provision with Many Participants.” Review of Eco-
nomic Studies 70: 589–614. [8]

Norman, Peter. 2004. “E�cient Mechanisms for Public Goods with Use Exclusion.” Review
of Economic Studies 71: 1163–88. [8]

Bagnoli, Mark, and Ted Bergstrom. 2005. “Log-concave probability and its applications.”
Economic theory 26 (2): 445–69. [11]

Bergemann, Dirk, and Stephen Morris. 2005. “Robust Mechanism Design.” Econometrica
73: 1771–813. [7, 10]

Fang, Hanming, and Peter Norman. 2006. “Overcoming participation constraints.” Unpub-
lished manuscript, [8]

Jackson, Matthew O, and Hugo Sonnenschein. 2007. “Overcoming Incentive Constraints
by Linking Decisions.” Econometrica 75 (1): 241–57. [8]

Besley, Timothy, and Torsten Persson. 2009. “The Origins of State Capacity: Property
Rights, Taxation, and Politics.” American Economic Review 99 (4): 1218–44. [5]

Bierbrauer, Felix J., and Martin F. Hellwig. 2016. “Robustly coalition-proof incentive mech-
anisms for public good provision are voting mechanisms and vice versa.” Review of
Economic Studies 83 (4): 1440–64. [13]

Kuzmics, Christoph, and Jan-Henrik Steg. 2017. “On public good provision mechanisms
with dominant strategies and balanced budget.” Journal of Economic Theory 170: 56–
69. [13]



2.A Proofs | 17

2.A Proofs

2.A.1 Proof of Proposition 1

We seek to show that the probability of the event “∃i ∈ I: 1
m

∑m
k=1 θik < 1” is

smaller than the probability of the event “ ∃i ∈ I: 1
m+1

∑m+1
k=1 θik < 1.” Since pref-

erences are iid, this holds if and only if, for any given individual i, the proba-
bility of 1

m

∑m
k=1 θik < 1 is smaller than the probability of 1

m+1

∑m+1
k=1 θik < 1. As

an implication of Corollary 2.1 in Proschan (1965), the probability of an event
1
m

∑m
k=1 θik < x, where x < µ is strictly decreasing in m.1⁰ The proposition fol-

lows from this fact upon setting x = 1.

2.A.2 Proof of Lemma 1

We occasionally use q(θ) as a shorthand for {qk(θ)}k∈K. Moreover, we will use
v(θi, q(θ)) as a shorthand for

∑

k∈K θik qk(θ). For a given state θ , we write
K0(θ)= {k | qk(θ)= 0} for the set of projects that are not implemented and,
analogously, K1(θ)= {k | qk(θ)= 1} for the complementary set. Also, for any k,
we write θ k(θ)=mini∈I θik and θ k(θ)=maxi∈I θik. If this creates no confusion,
we will occasionally suppress the dependence of these minima and maxima on
the state θ and simply write θ k and θ k. The following lemma will also prove
useful.

Lemma 4. Consider two states θ and θ ′ such that the following holds:

i) θ ′−i = θ−i,

ii) θ ′ik > θik for all k with qk(θ)= 1,

iii) θ ′ik < θik for all k with qk(θ)= 0.

Then, for all k, qk(θ ′)= qk(θ) and ti(θ)= ti(θ
′).

Proof. The incentive constraints for individual i in state θ ′ imply

ti(θ) − ti(θ
′) ≥ v(θ ′i , q(θ)) − v(θ ′i , q(θ ′)) . (2.6)

Note that

1⁰ Proschan refers to distributions with a log-concave density as Polya frequency functions of
order 2.
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v(θ ′i , q(θ)) − v(θ ′i , q(θ ′)) =
∑

k∈K

θ ′ik(qk(θ) − qk(θ ′))

=
∑

k∈K

θik(qk(θ) − qk(θ ′))

+
∑

k∈K1(θ)

(θ ′ik − θik)(1 − qk(θ ′))

+
∑

k∈K0(θ)

(θ ′ik − θik)(0 − qk(θ ′))

≥ v(θi, q(θ)) − v(θi, q(θ ′)).

Moreover,

v(θ ′i , q(θ)) − v(θ ′i , q(θ ′)) > v(θi, q(θ)) − v(θi, q(θ ′)) , (2.7)

if there is k ∈ K1(θ) with qk(θ ′)= 0 or k ∈ K0(θ) with qk(θ ′)= 1. Suppose in
the following that this is the case. Then, inequalities (2.6) and (2.7) imply that

ti(θ) − ti(θ
′) > v(θi, q(θ)) − v(θi, q(θ ′)).

Hence, a violation of incentive compatibility for individual i in state θ ′. Thus, the
assumption that there is k ∈ K1(θ) with qk(θ ′)= 0 or k ∈ K0(θ) with qk(θ ′)= 1
has led to a contradiction and must be false. Hence, for all k, qk(θ)= qk(θ ′). It
remains to be shown that ti(θ)= ti(θ

′). With q(θ)= q(θ ′), (2.6) becomes

ti(θ) − ti(θ
′) ≥ 0 . (2.8)

Analogously, the incentive constraint ti(θ)− ti(θ
′)≤ v(θi, q(θ))− v(θi, q(θ ′))

becomes

ti(θ) − ti(θ
′) ≤ 0 . (2.9)

Inequalities (2.8) and (2.9) imply ti(θ)= ti(θ
′).

2.A.2.0.1 Proof of Lemma 1. Consider a state θ and suppose that there exist
individuals i and i′ with ti(θ) 6= ti′(θ). We show that this leads to a contradiction
to the assumption that the given mechanism is anonymous, incentive compatible
and satisfies ex post budget balance. Assume without loss of generality that
ti(θ)>

∑

k∈K qk(θ). We construct state θ ′ so that

i) θ ′−i = θ−i,

ii) θ ′ik = θ k for all k ∈ K1(θ),

iii) θ ′ik = θ k for all k ∈ K0(θ).
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By Lemma 4, q(θ)= q(θ ′) and ti(θ)= ti(θ
′). Therefore, ti(θ

′)>
∑

k∈K qk(θ ′)
and there must exist an individual i′ with ti′(θ

′)<
∑

k∈K qk(θ ′). Otherwise there
would be a budget surplus in state θ ′. We now construct state θ ′′ so that

i) θ ′′−i = θ
′
−i,

ii) θ ′′ik = θ k for all k ∈ K1(θ),

iii) θ ′′ik = θ k for all k ∈ K0(θ).

Again, by Lemma 4, q(θ ′)= q(θ ′′) and ti′(θ
′)= ti′(θ

′′). Also, by anonymity,
ti(θ

′′)= ti′(θ
′′). Since ti(θ

′′)<
∑

k∈K qk(θ ′′) there must exist i′′ 6= i, i′ with
ti′′(θ

′′)>
∑

k∈K qk(θ ′′). Otherwise there would be budget deficit.
We now repeat this construction until we have a state θ (n) so that all individ-

uals have the same type, i.e. so that for all ι ∈ I, θ (n)
ιk = θ k for all k ∈ K1(θ)

and θ (n)
ιk = θ k for all k ∈ K0(θ). By anonymity tι(θ

(n))= tι′(θ
(n)), for all ι

and ι′. By the arguments above, we either have tι(θ
(n))>

∑

k∈K qk(θ (n)) or
tι(θ

(n))<
∑

k∈K qk(θ (n)) in this state, a contradiction to budget balance.

2.A.3 Proof of Lemma 2

Given a preference relation�i over K′ denote by r(�i, k) the rank of alternative k.
Hence, k′ �i k if and only if r(�i, k′)< r(�i, k). To construct the corresponding
type θi, we let θik = d(�i, k)+ 1 where d(�i, k) is the rank difference of two
neighbouring alternatives, d(�i, k)= r(�i, k− 1)− r(�i, k). We now show that
r(�i, k′)< r(�i, k) if and only if

∑k′

l=1(θil − 1)>
∑k

l=1(θil − 1). To see that this
is the case, suppose that k′ > k (the case k′ < k is analogous) and note that, by
construction,

k′
∑

l=1

(θil − 1) >
k
∑

l=1

(θil − 1)

⇔
k′
∑

l=k+1

θil > k′ − k

⇔
k′
∑

l=k+1

(d(�i, l) + 1) > k′ − k

⇔
k′
∑

l=k+1

d(�i, l) > 0

⇔
k′
∑

l=k+1

r(�i, l − 1) − r(�i, l) > 0

⇔ r(�i, k) > r(�i, k′).
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2.A.4 Proof of Lemma 3

Denote by pno(k′) the probability that any one individual i opts for the status-
quo-outcome – i.e. the probability of the event

∑k′

l=1(θil − 1)< 0 – under a noth-
ing or all public goods with an index below k′ mechanism. From the arguments in
the proof of Proposition 1,

pno(k′) < pno(k′ + 1) . (2.10)

Also note that

S(k′ + 1)

= E

�

1
n

n
∑

i=1

k′+1
∑

l=1

(θil − 1)

· 1

 

k′+1
∑

l=1

(θil − 1) ≥ 0 and ∀j 6= i,
k′+1
∑

l=1

(θjl − 1) ≥ 0

!

�

= pno(k′ + 1)n−1 1
n

n
∑

i=1

E





k′+1
∑

l=1

(θil − 1)1

 

k′+1
∑

l=1

(θil − 1) ≥ 0

!



 . (2.11)

where 1 is the indicator function. Moreover,

E





k′+1
∑

l=1

(θil − 1)1

 

k′+1
∑

l=1

(θil − 1) ≥ 0

!





≥ E





k′+1
∑

l=1

(θil − 1)1

 

k′+1
∑

l=1

(θil − 1) ≥ 0 and
k′
∑

l=1

(θil − 1) ≥ 0

!





≥ E





k′+1
∑

l=1

(θil − 1)1

 

k′
∑

l=1

(θil − 1) ≥ 0

!



 . (2.12)

The first inequality holds because the second expression looks at a smaller set
of events among those that satisfy

∑k′+1
l=1 (θil − 1)≥ 0. The second inequality

holds because the sum in the third expression is now both over events with
∑k′+1

l=1 (θil − 1)≥ 0 and over events with
∑k′+1

l=1 (θil − 1)< 0, among those that
satisfy

∑k′

l=1(θil − 1)≥ 0. We now rewrite this last expression as
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E





k′+1
∑

l=1

(θil − 1)1

 

k′
∑

l=1

(θil − 1) ≥ 0

!





= pno(k′)E[θik′+1 − 1] + E





k′
∑

l=1

(θil − 1)1

 

k′
∑

l=1

(θil − 1) ≥ 0

!





= pno(k′)(µ − 1) + E





k′
∑

l=1

(θil − 1)1

 

k′
∑

l=1

(θil − 1) ≥ 0

!





> E





k′
∑

l=1

(θil − 1)1

 

k′
∑

l=1

(θil − 1) ≥ 0

!



 . (2.13)

Equation (2.11) and the inequalities (2.10), (2.12) and (2.13) imply

S(k′ + 1) > pno(k′)n−1 1
n

n
∑

i=1

E





k′
∑

l=1

(θil − 1)1

 

k′
∑

l=1

(θil − 1) ≥ 0

!





= S(k′).
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2.B Supplement

2.B.1 Proof of Proposition 2

We start by bounding the probability that any individual vetoes against the all-
outcome with Chebychef’s inequality

P

�

1
m

m
∑

k=1

θik < 1

�

≤ P

�

�

�

�

�

�

µ −
1
m

m
∑

k=1

θik

�

�

�

�

�

> µ − 1

�

≤
σ2

(µ − 1)2

1
m

.

(2.14)

Using Inequality (2.14) we bound the probability that no one vetoes from below

Pall(m) = P[no individual vetoes the provision of m public projects]

=
�

1 − P[i vetoes the provision of m public projects]
�n

≥
�

1 −
σ2

(µ − 1)2

1
m

�n

.

The lower bound goes to 1 as m→∞. Hence, limm→∞ Pall(m)= 1 .

2.B.2 Proof of Proposition 3

We adapt the argument in the proof of Proposition 2. There it was shown that
Pall(m)≥

�

1− d
m

�c m
for d= σ2

(µ−1)2 . The right hand side of this inequality con-
verges to e−c d > 0 as m→∞.

2.B.3 Limit Probability as m
n Becomes Unbounded

Define h(m)= n
m . We seek to show that Pall(m) converges to 1 as h(m) con-

verges to 0. We again adapt the argument in the proof of Proposition 2 where
it was shown that Pall(m)≥

�

1− d
m

�h(m) m
for d= σ2

(µ−1)2 . Since
�

1− d
m

�m
is an

increasing function of m, it is, for all m, (weakly) larger than 1− d. Hence,

Pall(m) ≥ (1 − d)h(m).

The right hand side of this inequality goes to 1 as h(m)→ 0.
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Figure 2.1. Example of preference relations

2.B.4 An Example Illustrating Assumption 1

Consider the case with two public projects that is illustrated in Figure 2.1. For
ease of exposition, the figure shows valuations net of the per capita provision
costs, vik = θik − 1. With Assumption 1 there are three outcomes: no provision,
provision of good 1, and the provision of goods 1 and 2. The number of possible
preference orderings over these three outcomes equals 3!= 6. Figure 2.1(a) il-
lustrates that for every preference ordering�i there is some type θi that induces
it. For instance, valuations in the upper right quadrant give rise to the follow-
ing ranking: providing two public goods is preferred over providing one public
good. Providing one public good in turn is preferred over no provision at all. As
the Figure shows, any one of the 6 possible preference profiles corresponds to
some region in Figure 2.1(a). Without Assumption 1, a fourth outcome comes
into play, namely to provide the public good with index k= 2, but not to provide
the public good with index 1. There are now 4!= 24 preference orderings over
these outcomes. As Figure 2.1(b) shows, only eight of these preference relations
can be represented in the given type space. For example, a preference relation
so that {2}�i {1}�i ; �i {1, 2} is incompatible with it.
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3

Ranking Mechanisms
for Coupled Binary Decisions

Joint with Kilian Russ

3.1 Introduction

Almost all collective decisions in society – be it in committees, parliaments or
referenda – are made by means of (simple) Majority Rule. We base decisions
on how many individuals favor or oppose a reform rather than how much every-
one cares. This blindness to preference intensities casts doubt on the efficiency
of voting as an aggregation mechanism. Consider a scenario in which 49% of
individuals oppose a proposed reform with drastic consequences for each indi-
vidual. A majority of 51% of people marginally benefits and therefore supports
the reform. Nevertheless it seems sensible to decide in favor of the minority. This
inherent weakness of direct democracy based on Majority Rule has long been
recognized as the Tyranny of the Majority (De Tocqueville (1835)).

Advocates of Majority Voting point out several desirable properties. First,
Majority Voting takes everyone’s opinion into account and treats them equally.
Second, Majority Voting respects consensus. Third, Majority Voting provides in-
dividuals with an incentive to reveal their preferences truthfully. For instance,
if one were to naively ask how much everyone cares about a given reform, indi-
viduals would certainly like to exaggerate their feelings to sway the decision in
their favor regardless of how much they actually cared. So is it at all possible to
elicit preference intensities truthfully while maintaining all desirable properties
of Majority Voting?

This paper gives an affirmative answer to this question for the practically rel-
evant class of coupled binary decisions. Consider a set of agents who face a fixed
agenda of several reforms that have to be approved or rejected. We study a class
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of Ranking Mechanisms which are sensitive to preference intensities while main-
taining all desirable properties mentioned above. Agents communicate which
alternative they prefer in each decision problem. Additionally, they report a pri-
ority ranking over decision problems by ranking each problem according to the
absolute difference in utilities between the reform and the status quo. These
rankings are then used to assign weights to agents’ votes in a voting mechanism.
In each decision problem the reform is implemented if and only if the sum of
weighted votes in favor of implementation outweighs the one supporting the sta-
tus quo. Any Ranking Mechanism is thus implementable as a weighted voting
procedure. Rather than deciding upon each reform separately a Ranking Mech-
anism makes use of the linkage of problems by eliciting cardinal information of
preferences. In particular, the approval of any reform depends on both the num-
ber of agents in favor and their relative preference intensity towards the issue
(as reflected by the rank they assigned to that particular problem).

This paper establishes two sets of results. For the case of identical decision
problems we prove that the sincere strategy is a Bayes-Nash equilibrium of any
Ranking Mechanism. Agents find it optimal to rank problems according to the
absolute difference in utilities between the two alternatives as long as all other
agents do the same. We then maximize over the class of Ranking Mechanisms
and derive a closed form solution for the ex-ante efficient weight vector. The
optimal RankingMechanism ex-ante Pareto dominates SeparateMajority Voting
for arbitrary number of agents and decision problems. Further, it achieves full
efficiency in the limit as the number of decision problems tends to infinity.

We then extend our idea of ranking to non-identical decision problems. We
propose a generalized class of Randomized Ranking Mechanisms all of which
induce sincere equilibrium behavior. Intuitively, randomization is such that from
the perspective of all other agents each agent reports every priority ranking with
equal probability. We derive the ex-ante efficient Randomized Ranking Mech-
anism and provide a closed form solution for the optimal weight vector. The
optimal Randomized Ranking Mechanism ex-ante Pareto dominates Separate
Majority Voting for any number of agents and decision problems.

The optimal (Randomized) Ranking Mechanism respects both anonymity
and unanimity. Moreover, under mild conditions it allows for strong minorities
to overturn weak majorities and therefore mitigates the Tyranny of the Majority.
Our proposed mechanism is the first to successfully link both identical and non-
identical decision problem for any number of agents and problems.

Further we document that the picture changes under a different equilibrium
concept. Building on a result by Hortala-Vallve (2010) we show that under mild
conditions Separate Majority Voting is ex-ante Pareto efficient in the class of
strategy-proof mechanisms. In other words, the requirement that agents find
truth-telling a dominant strategy makes it impossible to exploit the coupled
structure and precludes any use of cardinal information.
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The rest of the paper is organized as follows. Section 3.2 reviews the existing
literature. The formal model is presented in Section 3.3. Section 3.4 presents
two impossibility results and may be seen as a theoretical justification for our
interest in the topic. In Section 3.5 we study the class of Ranking Mechanisms
linking identical decision problems. We generalize our results to non-identical
decision problems in Section 3.6. Section 3.7 concludes.

3.2 Related Literature

The conceptual idea of evaluating efficiency of voting rules in terms of ex-ante
expected welfare goes back to Rae (1969). Our work adds to a series of recent
papers studying the ex-ante welfare properties of voting schemes in environ-
ments with cardinal preferences (Gershkov, Moldovanu, and Shi (2017), Kim
(2017) among others).

The traditional literature on social choice has focused on environments with
ordinal preferences over alternatives. Classical impossibility results include the
famous Gibbard-Satterthwaite-Theorem (Gibbard (1973), Satterthwaite (1975))
and subsequent work demonstrating its robustness on cardinal type spaces with
respect to randomization (Hylland (1980)) and Bayesian implementation of or-
dinal mechanisms (Majumdar and Sen (2004)).

Coupling multiple decisions alone is not sufficient to overcome impossibil-
ity results. Barberà, Sonnenschein, and Zhou (1991) study a setting in which
agents have separable, ordinal preferences over subsets of objects. In our ter-
minology, an object is a decision problem which is contained in the subset if
and only if the reform in that decision problem is implemented. Their main re-
sult characterizes the set of strategy-proof mechanisms and implies that only
the most preferred subset of each voter can be elicited truthfully. In a cardinal
framework with a finite number of binary decisions Hortala-Vallve (2010) shows
that any strategy-proof mechanism cannot be both unanimous and sensitive to
preference intensities. As shown in Section 3.4 his results imply that (i) Sepa-
rate Majority Rule is ex-ante efficient in the class of strategy-proof mechanisms
and (ii) full efficiency remains unachievable among incentive compatible mech-
anisms for any finite number of decisions.

We are not the first to show that coupling decision problems may improve
efficiency under Bayesian implementation. There exist voting mechanisms that
are sensitive to cardinal intensities and Pareto improve upon ordinal mecha-
nisms such as Separate Majority Voting. Most notable examples thereof are a
Rationing Procedure by Jackson and Sonnenschein (2007), a Simple Scheme by
Casella and Gelman (2008) and Qualitative Voting by Hortala-Vallve (2012).

Jackson and Sonnenschein (2007) demonstrate that as the number of iden-
tical decision problems tends to infinity full efficiency is achievable. Their Ra-
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tioning Procedure works as follows. For any number of decision problems an
agent announces his utility type directly, but he has to ration his reported type
so as to match the underlying distribution as best as possible. The mechanism
then picks the alternative that maximizes reported welfare. However, their Ra-
tioning Procedure crucially relies on identical type distributions across problems.
It does not readily extend to a finite number of decision problems or continuous
type spaces and exact equilibrium strategies are unknown. Our Ranking Mech-
anism also achieves full efficiency in the limit while simultaneously admitting
intuitive equilibrium behavior and welfare improvements for any finite number
of decision problems.

In Casella and Gelman (2008), agents are endowed with a single bonus vote,
which can be cast in addition to regular votes. The decision is made according to
the sum of votes cast for each alternative. Their main result proves that in large
populations the Simple Scheme improves upon Separate Majority Voting for
small enough bonus votes. Although they restrict attention to large populations
our Proposition 6 implies that casting the bonus vote on the decision problem
with highest difference in utilities remains an equilibrium for any number of
agents. Casella and Gelman (2008) generalize their results to non-identical type
distributions across problems but not agents.

Hortala-Vallve (2012) proposes another intuitive voting procedure. Agents
are endowed with a fixed number of votes that can be distributed freely among
alternatives and problems. A reform is accepted if the total number of votes sup-
porting the reform is larger than the number of votes against it. The main result
of the paper shows that in settings with 2 or 3 agents with 4 possible valuations
and 2 decision problems Qualitative Voting is ex-ante efficient. Another mecha-
nism motivating much of the recent literature on coupled binary decisions is the
Storable Votes procedure by Casella (2005), which applies to a dynamic setup
of a committee meeting regularly over time.

While there has been considerable effort the literature has not yet proposed
a mechanism which is both intuitive and predictable – at least for the practically
relevant case of finitely many problems and agents. Simplicity as well as pre-
dictability are prerequisites for any real world application. Our paper fills this
gap and applies the idea of ranking to a social choice setting without monetary
transfers, namely coupled binary decisions.1

Our results for the optimal (Randomized) Ranking Mechanism identify ex-
pected order statistics as important moments of the underlying type distribution.
In this spirit our work is related to a recent paper by Kim (2017), who stud-
ies a social choice problem with K alternatives. Kim (2017) proposes a mecha-

1 The idea of ranking alternatives or objects has also been studied in the multidimensional
cheap talk literature, for example in the context of coordination in auctions Campbell (1998) and
Pesendorfer (2000) or biased expert advise Chakraborty and Harbaugh (2007) among others.
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nism based on expected order statistics which improves upon Majority Voting
by partly eliciting cardinal information on preferences. However, Kim’s mecha-
nism is not applicable in our setting due to the impossibility result by Majumdar
and Sen (2004). Relatedly, Apesteguia, Ballester, and Ferrer (2011) rely on ex-
pected order statistics to characterize the ordinal mechanism that maximizes
ex-ante expected utility in a social choice problem with cardinal preferences.
In contrast to our work, Apesteguia, Ballester, and Ferrer (2011) abstract from
incentive considerations.

3.3 The Model

There are n ∈ N agents, who have to decide on d ∈ N binary decisions. Each deci-
sion problem k ∈ D= {1, . . . , d} consists of two alternatives {0,1}. We interpret
0 as maintaining the status quo and 1 as implementing a reform. The overall
outcome is a vector x ∈ X = [0,1]d where the kth component xk represents the
probability of implementing the reform in decision k ∈ D.

We normalize the utility of maintaining the status quo to 0 for every agent
and every decision problem. Each agent i ∈ N = {1, . . . , n} draws a private von
Neumann-Morgenstern utility vector (or type) ui = (u1

i , . . . , ud
i ) representing his

cardinal utility if the reform is implemented in each of the different decision
problems. We refer to the sign of uk

i as agent i’s ordinal type and to |uk
i | as his

preference intensity in decision k. Throughout the paper we refer to uk
i as the

random variable and its realization interchangeably. The random variable uk
i

takes on values in Uk
i ⊂ R and is independently distributed between agents and

across problems. Formally, uk
i is independent of ul

j for all i, j ∈ N with i 6= j and
all k, l ∈ D with k 6= l. It has a finite first absolute moment and its continuous pdf
ρk

i is symmetric around zero. For notational convenience let Ui = (U1
i , ..., Ud

i ),
U = (Ui)i∈N and U−i = (U1, ...,Ui−1,Ui+1, ...,Un).

The distribution of types is common knowledge among agents. We assume
that agents’ utility is separable across problems and write the overall utility of
agent i with utility type ui ∈ Ui for outcome x ∈ X as Vi(x)=

∑d
k=1 uk

i · xk.2 The
above environment is entirely separable implying that there is no a priori reason
to link decision problems at all.

An indirect mechanism G= (M , g(·)) consists of a message spaceM =M⊗n,
which encompasses a message or action set M for each agent and a decision rule
g :M → X, which maps into the set of possible outcomes. Again, we refer to gk

as the random outcome in decision k as well as to its realization. Unless made

2 We follow most of the literature by assuming that preferences are additively separable across
problems. Ahn and Oliveros (2012) demonstrate the importance of the separability assumption
for equilibrium predictions even under Separate Majority Voting.
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explicit all expectation operators are meant to include the randomness of the
mechanism. We restrict attention to mechanisms that treat all agents equally.

Definition 1. An indirect mechanism G= (M , g) is anonymous if for all permu-
tations σ on N and all m ∈M it holds that g(m1, ..., mn)= g(mσ(1), ..., mσ(n)).

Agent i’s strategy si :Ui→M maps i’s utility vector into a message in his ac-
tion set. A collection of strategies for all agents s= (s1, ..., sn) is called a strategy
profile and the strategy profile of all but agent i is denoted by s−i. Agent i eval-
uates a strategy si given an indirect mechanism (M , g) and a strategy profile of
the other agents s−i by taking expectations over all other agents’ utility types
(and the potentially random mechanism), i.e. according to E−i [Vi(g(si, s−i))].3

Definition 2. A strategy profile ŝ is a Bayes-Nash equilibrium of (M , g) if for every
agent i the strategy ŝi is in expectation a best response to the strategy profile ŝ−i of
the other agents. Formally, E−i [Vi(g(̂si, ŝ−i))]≥ E−i [Vi(g(si, ŝ−i))] for all i and si.

A mechanism is direct ifM =U , i.e. agents report their utility type directly.

Definition 3. A direct mechanism (U , g) is

1. strategy-proof, if for every agent i with type ui the truthful strategy is a best
response to any strategy profile of all other agents. Formally, Vi(g(ui, u−i))≥
Vi(g(ũi, u−i)) for all i, ui, ũi and u−i.

2. incentive compatible, if for every agent i with type ui the truthful strategy
is in expectation a best response to the truthful strategy profile of all other
agents. Formally, E−i [Vi(g(ui, u−i))]≥ E−i [Vi(g(ũi, u−i))] for all i, ui and
ũi.

While the revelation principle guarantees that there is theoretically no loss
in restricting attention to direct mechanisms, it might still be simpler to commu-
nicate indirect mechanisms in practice. The Ranking Mechanisms we introduce
below are examples for which an indirect representation facilitates understand-
ing and offers an intuitive implementation.

Throughout the paper we measure efficiency at the ex-ante stage. Agent i’s
ex-ante expected utility under a mechanism (M , g) and strategy profile s is
E[Vi(g(s))] where the expectation is taken w.r.t. to all random variables.

Definition 4. A mechanism (ex-ante Pareto) dominates another mechanism if it
generates at least as high levels of ex-ante expected utility for all agents. A mecha-
nism is (ex-ante Pareto) efficient if it is not dominated.

3 Throughout Ei and E−i denote expectations taken with respect to all random variables with
subscript i and subscripts j 6= i (including the randomness of the mechanism), respectively.
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Full efficiency refers to the highest ex-ante utility level achievable under any
(not necessarily incentive compatible) mechanism. Ex-ante expected welfare is
the sum over all agents’ ex-ante expected utility levels. A necessary requirement
for ex-ante efficiency is unanimity.

Definition 5. A mechanism is unanimous if in every decision problem it imple-
ments the alternative preferred by all agents whenever such alternative exists.

One unanimous mechanism is Separate Majority Voting, which serves as
a benchmark throughout this work. Every agent casts a single vote on every
problem and the decision is made by simple Majority Rule or in case of a tie by
a fair coin toss separately for each problem. Separate Majority Voting is strategy-
proof but makes no use of the fact that there are multiple problems.

3.4 Impossibility Results

The first result of this section shows that if one restricts attention to strategy-
proof mechanisms Separate Majority Voting is ex-ante Pareto efficient. This re-
sult is a consequence of an impossibility result by Hortala-Vallve (2010). We
borrow the following definition.

Definition 6. (Hortala-Vallve (2010)) The preference domain is unrestricted if
there exists ε > 0 such that (−ε,ε) ⊆ Uk

i for all i ∈ N and all k ∈ D.

With this definition we have the following proposition.

Proposition 4. Among anonymous, strategy-proof mechanisms Separate Majority
Voting is efficient in an unrestricted domain.

Proposition 4 follows from the impossibility result established in Hortala-
Vallve (2010): Among strategy-proof mechanisms unanimity implies non-
sensitivity and separability. A mechanism is separable on d coupled decision
problems if the outcome implemented in each decision problem only depends
on agents’ utilities for that problem. A mechanism is sensitive if there exist two
utility profiles of the same ordinal type but with different intensities, which re-
sult yet in a different outcome for at least one decision problem. In other words,
any strategy-proof and unanimous mechanism elicits only ordinal types and can-
not link decision problems. Proposition 4 follows because on a single decision
problem (Separate) Majority Voting is ex-ante efficient among all anonymous,
strategy-proof mechanisms in symmetric environments.⁴

Proposition 4 implies that from an ex-ante welfare perspective there is no ad-
vantage in linking decision problems in the class of strategy-proof mechanisms.
Moreover the efficient mechanism elicits only ordinal types. Our environment

⁴ For a general proof of the optimality of majority voting see Schmitz and Tröger (2012).
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with cardinal utility and randomization allows us to work with the different
implementation concept of incentive compatibility. The weaker requirement of
incentive compatibility does not make the problem trivial. Incentive constraints
still present a non-negligible restriction as full efficiency remains unachievable.

Proposition 5. Full efficiency is unachievable among incentive compatible mecha-
nisms.

Proof. See Appendix.

Incentive compatibility implies that only proportional types can be elicited
which prevents full efficiency. Together the above results raise the following
question: Is it at all possible to find an incentive compatible mechanism that
improves upon Separate Majority Voting? In the remainder of this paper we
give an affirmative answer to this question.

3.5 Ranking Identical Decision Problems

Our improvement upon Separate Majority Voting is centered around the intu-
itive idea of ranking decision problems. Concretely, we would like agents to not
only communicate which alternative they prefer in each decision problem – as
in Separate Majority Voting – but also express which problem they care most
about, which second, and so on.

To formalize the idea we define the following message space.

Definition 7. The (ranking) message space is defined as M = {(a,π) | a ∈
{0,1}d,π ∈ σ(D)}, where σ(D) denotes the set of all permutations over D. We
denote the profile of message spaces for all agents byM =M⊗n.

Note that any message m ∈M can canonically be separated across prob-
lems, i.e. m= (mk)k=1,...d. For decision problem k ∈ D we interpret message
mk = (ak,πk) in two parts. The ordinal part ak encodes whether an agent is
in favor of the reform ak = 1 or prefers the status quo ak = 0. The cardinal part
πk ∈ D corresponds to the rank an agent assigns to problem k. Importantly, an
agent can assign every rank exactly once.

We are interested in eliciting one particular ranking over decision problems,
namely, the one in which an agent ranks each decision problem according to
the absolute difference in utilities between the two proposed alternatives. Using
Definition 7 of the message space we formulate the following strategy.
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Definition 8. A strategy ∗
si :Ui→M is sincere if agent i reports his favored al-

ternative for every problem k and a ranking ∗
πi which sorts all problems by their

preference intensities. Formally, ∗ak
i = 1 if and only if uk

i > 0 and ∗
πk

i >
∗
πl

i only if
�

�uk
i

�

�≥
�

�ul
i

�

�.⁵

Our goal is to induce sincere equilibrium behavior. The motivation to fo-
cus attention on the sincere strategy is twofold. First, it is intuitive and easy to
understand from the perspective of an agent thereby making it a likely equilib-
rium outcome in practice. This is especially important because we work with
the weaker Bayes-Nash equilibrium concept. Second, the sincere strategy con-
tains strictlymore information than what is elicited by Separate Majority Voting.
Therefore the sincere strategy is a promising starting point both from a practical
as well as theoretical perspective.

However, it is not obvious how to construct (non-trivial) mechanisms for
which the sincere strategy profile is a Bayes-Nash equilibrium. We first present
our main idea under the following simplifying assumption.

Assumption 2. The random variable uk
i is identically and independently dis-

tributed between agents and across problems.

Section 3.6 generalizes our results to settings with different type distribu-
tions between agents and across problems. The next subsection introduces a
class of simple mechanisms all of which induce sincere equilibrium behavior
under Assumption 2.

3.5.1 Ranking Mechanisms

In this section we introduce the class of Ranking Mechanisms. Ranking Mecha-
nisms correspond to a generalization of standard voting procedures like Sep-
arate Majority Voting. For every decision problem an agent communicates
whether or not he is in favor of implementing the reform. A Ranking Mecha-
nism then assigns a weight to every vote of an agent. For each decision problem
the weight assigned to an agent’s vote solely depends on the agent’s reported
rank of that particular problem. Therefore two agents may be assigned differ-
ent weights in the same decision problem if they rank it differently. However,
weights are not agent-specific and since every agent gets to report every rank
exactly once a Ranking Mechanism remains anonymous.

Formally, we define a Ranking Mechanism (M , gRM,w) with M defined in
Definition 7 as follows. Every agent reports an ordinal type as well as a priority
ranking. The decision rule gRM,w :M → X is parametrized by a weight vector
w= (w1, ...,wd) ∈W, where W ⊂ Rd

++ denotes the set of strictly positive weight
vectors with d non-decreasing entries. For every decision problem k ∈ D and

⁵ Since types are continuously distributed the sincere strategy is unique with probability one.
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every agent i ∈ N the RankingMechanism (M , gRM,w) translates the reportmk
i =

(ak
i ,πk

i ) into a signed weight (2 · ak
i − 1) ·wπ

k
i . The ordinal part maps into the

sign of the weight such that ak
i = 0,1 corresponds to a negative and a positive

sign, respectively. The cardinal part πk
i ∈ D determines the entry of the weight

vector w ∈W. In particular, higher reported ranks map into (weakly) higher
weights. Formally, we define Ranking Mechanisms as the maximization of the
resulting sum of signed weights.

Definition 9. The Ranking Mechanism (M , gRM,w) with weight vector w ∈W im-
plements the outcome that maximizes the sum of signed weights. Ties are broken
by a fair coin toss. Formally, the decision rule is defined as

gRM,w(m) ∈ arg max
x∈{0, 1

2 ,1}d

¨ n
∑

i=1

d
∑

k=1

�

2 · ak
i − 1

�

· wπ
k
i · xk

«

.

Note that gRM,w is identical for multiples of w, i.e. gRM,w ≡ gRM,λ·w for all
λ > 0.

The class of Ranking Mechanisms has several desirable properties. First,
Ranking Mechanisms are both anonymous and unanimous. Second, as we show
in Section 3.5.3 all Ranking Mechanisms induce sincere equilibrium behavior.
Third, any Ranking Mechanism corresponds to a simple voting procedure: Ev-
ery agent is endowed with d votes of pre-specified weights w1, ...,wd. Agents are
allowed to cast one weighted vote in each decision problem. For every problem
the alternative with the higher sum of weighted votes is implemented. Ties are
broken by a fair coin toss. This interpretation offers a simple implementation
of any Ranking Mechanism in practice. Further it identifies Separate Majority
Voting as belonging to the class of Ranking Mechanisms with weights (1, ..., 1).⁶
Lastly, from a theoretical perspective the results of Section 3.5.4 imply that on
the ranking message space there is no loss in restricting attention to Ranking
Mechanisms. If agents report sincerely the ex-ante efficient outcome is imple-
mentable by a Ranking Mechanism. The next subsection illustrates the class of
Ranking Mechanisms by means of an example.

3.5.2 Example

Distribution of Types. There are three agents, who have to decide on two binary
decisions. For every decision problem we normalize every agent’s utility to 0 if
the status quo is maintained. We denote by uk

i the utility of agent i ∈ {1, 2,3} in
decision problem k ∈ {I, II} if the corresponding reform is implemented. Utility

⁶ Note that the Simple Scheme by Casella and Gelman (2008) also belongs to the class of
Ranking Mechanisms with weights (1, ..., 1, 1+ θ).
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Table 3.1. Example of a Ranking Mechanism

Decision Agent 1 Agent 2 Agent 3 Sum of Outcome Outcome
problem (10, 21) (00, 21) (11, 12) weights RM SMV

I +3 +3 +1 7 1 1
II −1 −1 +3 1 1 0

uk
i is drawn from a standard normal distribution. It may thus be positive or

negative implying that an agent is either in favor or against the proposed reform,
respectively. Further the absolute value of uk

i encodes his preference intensity
towards the decision.

Sincere Strategies. Suppose agents 1, 2 and 3 draw utility vectors u1 =
(4,−1), u2 = (3,−2) and u3 = (1, 4), respectively. Assume further that all agents
find it optimal to report sincerely. Agents 1’s sincere report ∗

s1 is given by
(
∗
a1,

∗
π1)= (10, 21). Agent 1 is in favor of the reform in the first decision problem

and against it in the second ∗
a1 = (10). By reporting ∗

π1 = (21) agent 1 assigns a
higher rank to his vote in decision problem I and a lower priority to problem II.
The sincere reports of agent 2 and 3 are given by ∗s2 = (10,21) and ∗

s3 = (11, 12),
respectively.

Ranking Mechanism. We illustrate the Ranking Mechanism with weight vec-
tor w= (1, 3). For decision problem I the Ranking Mechanism translates agent
1’s report m1

1 = (a1
1,π1

1)= (1, 2) into the signed weight (2 · a1
1 − 1) ·wπ

1
1 = +3.

Intuitively, agent 1 is in favor of the reform (positive sign) and indicates a high
priority (weight 3) in decision problem I. For decision problem II agent 1 reports
(a2

1,π2
1)= (0, 1) and the assigned weight equals (2 · a2

1 − 1) ·wπ
2
1 = −1. The as-

signed weights for decision problem I and II for agent 1 are summarized in col-
umn 2 in Table 3.1. Analogously the Ranking Mechanism assigns signed weights
to agent 2 and 3 as summarized in column 3 and 4. After translating all agents’
reports into signed weights the Ranking Mechanism calculates the problem wise
sum of signed weights (column 5) and implements the reform if and only if the
sum is positive. The resulting outcome of the Ranking Mechanism is illustrated
in column 6. For comparison column 7 contains the outcome under Separate
Majority Voting.

A few points are worth noting. First, the Ranking Mechanism respects una-
nimity in decision problem I. Second, by overturning the majority of agents the
Ranking Mechanism deviates from Separate Majority Voting in decision prob-
lem II. Agent 3 ranks problem II highest and thereby sways the decision in his
favor albeit being a minority. In our case this is indeed a desirable outcome.
Utility vectors are drawn such that the sum of utilities increases from 8 under
Separate Majority Voting to 9 under the Ranking Mechanism. Third, the sin-
cere strategy is not a dominant strategy for every agent. Agent 1, for example,
prefers to deviate to report (10,12) thereby changing the outcome of problem
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II while not affecting that of problem I. Although it is not a dominant strategy,
the next section proves that the sincere strategy profile constitutes a Bayes-Nash
equilibrium.

3.5.3 Sincere Equilibrium

This section establishes the most important property of the class of Ranking
Mechanisms, namely that agents find it optimal to report sincerely. Apart from
its theoretical appeal the existence and characterization of an equilibrium is
indispensable to any further efficiency analysis.

Proposition 6. Under Assumption 2, the sincere strategy profile is a Bayes-Nash
equilibrium of any Ranking Mechanism.

Proof. See Appendix.

The proof consists of two parts essentially separating ordinal and cardinal
incentives. For every agent the sincere ordinal report is weakly optimal inde-
pendently of the reported priority ranking and the message profile of all other
agents. Having reported the sincere ordinal type an agent finds it optimal to
rank decision problems sincerely. Since all reports by the other agents are equally
probable, an agent has no incentive to strategically rank decision problems.

Importantly, Proposition 6 allows us to make precise welfare predictions and
to compare the performance of different Ranking Mechanisms. In the remainder
of this section we assume that agents report sincerely whenever we evaluate the
performance of a Ranking Mechanism.

3.5.4 The Optimal Ranking Mechanism

This section compares the ex-ante welfare of different Ranking Mechanisms. For
any fixed number of agents and decision problems we solve for the ex-ante ef-
ficient Ranking Mechanism. In particular, we derive a closed form solution for
the ex-ante efficient weight vector. A consequence of our derivation is that the
optimal Ranking Mechanism ex-ante dominates Separate Majority Voting.

What is the best outcome a mechanism can implement given that agents re-
port sincerely? Intuitively, the efficient mechanism should decide in favor of a re-
form if the sum of expected utilities from doing so is positive. Therefore it should
assign to each agent’s vote a weight that corresponds to that agent’s expected
utility from implementing the reform. More precisely, the signed weight should
equal the agent’s expected utility conditional on all information contained in
his report. By Definition 8 the ordinal part of an agent’s message is informa-
tive about the sign of his utility and should therefore only determine the sign
of the weight. The cardinal part - i.e. the rank assigned to a problem - contains
information about an agent’s preference intensity. Concretely, an agent ranks a
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problem at position l ∈ D if he has his l-th highest preference intensity in that
problem. Therefore the l-th weight should correspond to the expected value of
an agent’s l-th order statistic of his preference intensity. Building on this logic
we define the following weight vector.

Definition 10. The efficient weight vector ∗
w ∈W is given by

∗
w =

�

Ei

�
�

�uk
i

�

�

(1:d)

�

, ...,Ei

�
�

�uk
i

�

�

(d:d)

��

for some i ∈ N and d ∈ D, where
�

�uk
i

�

�

(k:d) denotes the k-th (out of d) order statistic
of the preference intensity

�

�uk
i

�

�.⁷ Under Assumption 2, the above definition is inde-
pendent of the choice of i ∈ N and k ∈ D which justifies the notation. We refer to
(M , gRM,

∗
w) as the optimal Ranking Mechanism.

The next proposition justifies Definition 10.

Proposition 7. Under Assumption 2, the optimal Ranking Mechanism is ex-ante
Pareto efficient in the class of Ranking Mechanisms.

Proof. See Appendix.

In the Appendix we prove a stronger result. The optimal RankingMechanism
is ex-ante Pareto efficient among all indirect mechanisms that are defined on the
ranking message space and induce sincere equilibrium behavior. Put differently,
there is no better way to make use of the information elicited through sincere
equilibrium behavior than to assign weights to agents’ votes. For any sincere
message profile the Ranking Mechanism maximizes ex-ante expected welfare
conditional on all agents’ reports.

Definition 10 characterizes the efficient weight vector in terms of agents’
type distributions. For uk

i ∼ iiN (0,1) as in the example in Section 3.5.2 the
efficient weights are approximately (0.467, 1.128).⁸ We round all numbers to
three digits throughout this paper. A consequence of Proposition 7 is that the
optimal Ranking Mechanism ex-ante dominates Separate Majority Voting.

Corollary 2. Under Assumption 2, the optimal Ranking Mechanism ex-ante dom-
inates Separate Majority Voting.

The optimal Ranking Mechanism dominates Separate Majority Voting in the
weak sense of Definition 4. Inspection of the proof of Proposition 7 shows that
the optimal Ranking Mechanism generates at least as high levels of conditional
ex-ante expected welfare message profile by message profile. It is thus sufficient

⁷ Since uk
i is Lebesgue-integrable the weights ∗

w are well-defined, see Ahsanullah, Nevzorov,
and Shakil (2013), page 76.

⁸ E
�
�

�uk
i

�

�

(l:d)

�

= d!
(l−1)!·(d−l)!

∫∞
−∞ |x| · (F(x))l−1 · (1− F(x))d−ldF(x), see for example chapter 7 in

Ahsanullah, Nevzorov, and Shakil (2013).
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to ensure the existence of one message profile that results in different outcomes
to guarantee a strict improvement. Note that the two mechanisms differ if there
exists a message profile such that a strong minority overturns a weak majority
(see Section 3.5.2). This occurs if the largest minority of

�n
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�

agents all with
the highest assigned weight of ∗

wd = Ei

�
�

�uk
i

�

�

(d:d)

�

overturn the smallest major-

ity of
�n

2

�

agents all with the smallest assigned weight ∗
w1 = Ei

�
�

�uk
i

�

�

(1:d)

�

. The
following condition is sufficient for the optimal Ranking Mechanism to strictly
increase ex-ante expected utility upon Separate Majority Voting.

Remark 1. The optimal Ranking Mechanism strictly increases ex-ante expected
welfare over Separate Majority Voting if the number of agents n ∈ N, the number
of decision problems d ∈ N and the distribution of types is such that
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. (3.1)

Ceteris paribus Condition (3.1) is more likely to hold the higher the number
of agents or problems or the more dispersed the type distribution. If the number
of agents is even and there are at least two decision problems d≥ 2 the exis-
tence of some cardinal information - i.e. Var

��

�uk
i

�

�

�

is nonzero - is sufficient for
Condition (3.1) to be satisfied. Condition (3.1) in Remark 1 ensures that the
optimal Ranking Mechanism dominates Separate Majority Voting not merely
by more efficient resolution of ties, but also the more substantive change of al-
lowing strong minorities to overturn weak majority. Put differently, the optimal
Ranking Mechanism strictly improves upon Separate Majority Voting whenever
it mitigates the Tyranny of the Majority. Note that in the example in Section
3.5.2 both the weight vector (1,3) and the efficient weight vector (0.467, 1.128)
satisfy Condition (1) for three agents and two decision problems.

In the remainder of this section we provide a limiting result reminiscent of
Jackson and Sonnenschein (2007). As the number of decision problems goes to
infinity, the optimal Ranking Mechanism achieves full efficiency.

Proposition 8. Under Assumption 2, if the support of the type distribution is
bounded, the ex-ante utility levels under the optimal Ranking Mechanism converge
to full efficiency as the number of decision problems tends to infinity.

Proof. See Appendix.

Proposition 8 is driven by the insight that as the number of decision problems
becomes arbitrarily large agents are able to perfectly communicate their under-
lying utility vector. Apart from being theoretically appealing the above result
offers a strong rationale for linking decision problems. Note that by symmetry
of the environment any Ranking Mechanism trivially converge to full efficiency
as the number of agents tends to infinity.
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3.6 Ranking Non-Identical Decision Problems

In this section we relax Assumption 2 and allow for different type distributions
between agents and across problems. We impose that utility types are indepen-
dently but not necessarily identically distributed.

We first show that the sincere strategy profile is - in general - no longer a
Bayes-Nash equilibrium. However, there exist special cases for which it is. Mo-
tivated by this observation we propose a shuffling procedure based on random-
ization which restores sincere equilibrium behavior of all agents. We then derive
the ex-ante efficient Randomized Ranking Mechanism and prove that it ex-ante
dominates Separate Majority Voting.

3.6.1 Strategic Ranking

Consider a modified version of our example from Section 3.5.2. Suppose
agent 1 draws his utility type in problem II from a uniform distribution with
support [−1, 1] instead of from a standard normal distribution. Formally, all
uk

i ∼ iiN (0,1) with the exception of u2
1 which is independently drawn from

Uniform[−1,1].
Under these conditions agent 1 no longer reports every priority ranking

with the same probability when following the sincere strategy. Agent 1 is more
likely to rank problem I as his first ranked problem, i.e. report priority rank-
ing π1 = (21). Concretely, the probability that agent 1 reports priority rank-
ing π1 = (21) under the sincere strategy is P1[

∗
π1 = (21)]= P1

��

�u1
1

�

�>
�

�u2
1

�

�

�

=
0.631 6= 0.5. So agent 1 ranks problem I over problem II with probability 63.1%
when reporting sincerely.

So, if agent 1 and 2 were to report sincerely, agent 3 would anticipate that
agent 1 is likely to rank problem I highest and thus might have an incentive to
strategically misreport his priority ranking. Since agent 1 is more likely to prior-
itize problem I agent 3 might prefer ranking π3 = (12) in order to influence the
decision in problem II with higher probability. Agent 3 will find such deviations
desirable if he has similar preference intensities for problem I and II. Straight-
forward calculations show that this is indeed the case in our example and agent
3 deviates from the sincere strategy.⁹ Therefore the sincere strategy profile is no
longer a Bayes-Nash equilibrium.

⁹ W.l.o.g consider the case of uk
3 > 0 for k= 1,2, i.e. agent 3 is in favor of implementing the

reform in both decision problems. Let p := P1
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.
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The example above demonstrates that Proposition 6 does not hold when
we allow for differently distributed types between agents and across problems.
Agent 3 deviates from the sincere ranking, because agent 1 is more likely to
rank problem I over problem II when following the sincere strategy. Conversely,
as long as agent 1 reports every priority ranking with the same probability, agent
3 has no incentive to strategically rank problems. This implies that it is not nec-
essary that agent 1 has the same distribution of types across all problems. It is
merely necessary that all agents have type distributions which result in a uni-
form distribution over all possible priority rankings under the sincere strategy.
Formally, we define the following property of an agent’s type distribution.

Assumption 3. For every agent i the type distribution is Ranking Uniform, i.e.
Pi[

∗
πi = πi]= Pi[

∗
πi = π′i] for all πi,π

′
i ∈ σ(D) and all i ∈ N.

Assumption 3 is violated in the example above. But suppose agent 1 drew
his utility in decision problem II from a uniform distribution with support [−c, c]
for some c ∈ R++. Then for c≈ 1.470 it holds that P1

��

�u1
1

�

�>
�

�u2
1

�

�

�

= 1
2 . Agent

1 reports each priority ranking with equal probability and type distributions
are Ranking Uniform. As this example illustrates there exist Ranking Uniform
type distributions that are not identical across problems. For these the following
corollary generalizes Proposition 6.

Corollary 3. Under Assumption 3, the sincere strategy profile is a Bayes-Nash equi-
librium of any Ranking Mechanism.

The corollary follows from inspection of the proof of Proposition 6. The next
section builds on the above insight and defines a shuffling procedure based on
randomization. Motivated by Corollary 3 the procedure guarantees that from
the perspective of every agent all reports of the other agents are equally proba-
ble.

3.6.2 Shu�ing Rankings

To illustrate the idea of our shuffling procedure consider the example from
the previous Section 3.6.1. Recall that all uk

i ∼N (0, 1) with the exception of
u2

1 ∼ Uniform[−1,1]. Under the sincere strategy agent 1 is more likely to rank
problem I over problem II, i.e. ∗

π1 = (21) with probability 0.631 and ∗
π1 = (12)

with probability 1− 0.631= 0.369.
Suppose agent 1 reported sincerely and consider the following shuffling pro-

cedure that turns every reported ranking of agent 1 into a shuffled ranking as
follows. With probability 0.208 the reported ranking is changed to the less prob-
able ranking (12) andwith probability (1− 0.208) the reported ranking remains
unchanged. Then, the probability that agent 1’s shuffled ranking equals ranking
(21) is given by 0.631 · (1− 0.208)= 0.500 and the probability for it to be (12)
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equals 0.369+ 0.631 · 0.208= 0.500. If the mechanism were to use the shuffled
ranking of agent 1 there would be no incentive for agent 2 and 3 to strategically
rank decision problems. From their point of view all shuffled rankings of agent
1 are equally likely. Further, agent 1 has no incentive to strategically rank deci-
sion problems since shuffling occurs with equal probability after any report. In
the remainder of this section we generalize the above shuffling procedure to an
arbitrary number of agents and problems.

A shuffling procedure is a (random)mapping from agents’ reported rankings
into the set of all possible rankings. It is characterized by two parts. First, for
every agent i we define a shuffling probability αi ∈ [0,1] which corresponds to
the probability with which every reported ranking of agent i is shuffled. Second,
for every agent iwe specify the shuffling lottery βi ∈∆(σ(D))where βπi

i ∈ [0,1]
is the probability with which the reported ranking is changed to ranking πi in
case it does get shuffled. Formally, we define a shuffling procedure as follows.

Definition 11. A shuffling procedure for agent i is a randommapping γi : σ(D)→
σ(D) defined as

γi(πi) =

(

πi with probability 1 − αi

π′i with probability αi · β
π′i
i

for πi,π
′
i ∈ σ(D), where αi ∈ [0,1] and βi ∈∆(σ(D)) are referred to as agent i’s

shuffling probability and shuffling lottery, respectively. We refer to the image γi(πi)
as agent i’s shuffled ranking.

The goal is to construct a shuffling procedure – that is choose α and β – such
that every agent’s shuffled ranking is uniformly distributed under the sincere
strategy profile. We formalize this point in the following remark.

Remark 2. For any agent i the choice of αi and βi is such that it leads to a uniform
distribution of shuffled rankings under the sincere strategy. Formally, we choose
αi ∈ [0,1] and βi ∈∆(σ(D)) such that

Pi

�

γi(
∗
πi) = πi

�

= (1 − αi) · p
πi
i + αi · β

πi
i =

1
d!

for all πi ∈ σ(D),

(3.2)

where pπi
i := Pi

� ∗
πi = πi

�

is agent i’s probability of ranking πi under the sincere
strategy.

The intuition behind Equation (3.2) is straightforward. There are two ways
a shuffled ranking takes on one particular ranking: either the agent sincerely
reports that ranking and it does not get shuffled, or the agent’s reported ranking
does get shuffled in which case the shuffling lottery picks the ranking.
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Equation (3.2) immediately places a lower bound on the shuffling probabil-
ities αi. To see this, consider the ranking that an agent is most likely to report
under the sincere strategy and suppose the shuffling lottery βi places probability
zero on this ranking. Plugging this into Equation (3.2) gives the lower bound
for the shuffling probability αi. Intuitively, even if the shuffling lottery places
probability zero on the most probable sincerely reported ranking the shuffling
procedure still needs to bring down its probability to 1

d! . Since all other rank-
ings are by definition less likely the minimal level of shuffling is pinned down
by the probability of an agent’s most probable reported ranking under the sin-
cere strategy profile. Formally, we define the shuffling probabilities for all agents
as follows.

Definition 12. The (minimal) shuffling probability for agent i is given by

αi = 1 −
1

d! · pmax
i

,

where pmax
i :=maxπi∈σ(D) Pi

� ∗
πi = πi

�

is the probability of the ranking which
agent i is most likely to reported under the sincere strategy.¹⁰ Let α= (αi)i∈N cor-
respond to the collection of shuffling probabilities for all agents.

Note that if (and only if) an agent’s type distribution is Ranking Uniform in
the sense of Assumption 3 his shuffling probability is zero. The shuffling proce-
dure does not introduce randomization if an agent already reports all rankings
with equal probability. For nonzero shuffling probabilities Equation (3.2) implies
the following choice for the shuffling lottery.

Definition 13. The shuffling lottery of agent i with nonzero shuffling probability
αi (defined in Definition 12) is given by

β
πi
i =

1
αi

�

1
d!
− (1 − αi) · p

πi
i

�

for πi ∈ σ(D),

where pπi
i := Pi

� ∗
πi = πi

�

is the probability with which agent i reports ranking πi

under the sincere strategy. For consistency we choose βπi
i = pπi

i for all πi ∈ σ(D) if
agent i’s shuffling probability is zero in Definition 12. Let β = (βi)i∈N denote the
collection of shuffling lotteries for all agents.

A shuffling procedure with shuffling probabilities and shuffling lotteries as
in Definition 12 and Definition 13 – henceforth referred to as the shuffling pro-
cedure – leads to a uniform distribution of shuffled rankings by all agents. From
the perspective of any one agent all other agents’ shuffled rankings are equally

1⁰ While our shuffling procedure also works for larger choices of αi the next section shows that
in the context of our Ranking Mechanisms the minimal choice in Definition 12 is desirable from
an ex-ante welfare perspective.
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likely and there is no incentive to strategically rank decision problems. In the
next section we integrate the shuffling procedure into our Ranking Mechanism.

3.6.3 Randomized Ranking Mechanisms

Equipped with the shuffling procedure from the previous section, we define the
new class of Randomized Ranking Mechanisms. A Randomized Ranking Mech-
anism corresponds to a Ranking Mechanism on the shuffled message profile. It
uses the message space from Definition 7 and its decision rule gRRM,w :M →
∆(X) is parametrized by a weight vector w= (w1, ..., wd) ∈W, where W ⊂ Rd

++
denotes the set of strictly positive weight vectors with non-decreasing compo-
nents. Formally, we define a Randomized Ranking Mechanism as follows.

Definition 14. The Randomized Ranking Mechanism (M , gRRM,w) with weight
vector w ∈W implements the same outcome as the Ranking Mechanism gRM,w on
the shuffled message profile. Formally,

gRRM,w(m) =
�

gRM,w ◦ γ
�

(m)

where γ(m)= (ai,γi(πi))i∈N denotes the profile of shuffled messages of all agents
and γi is the shuffling procedure defined in the previous section (Definition 11, 12
and 13).

Every Randomized Ranking Mechanism is a composition of the correspond-
ing Ranking Mechanism (with the same weight vector) and the shuffling proce-
dure. Definition 14 immediately implies that for any strategy profile the distri-
bution over outcomes under the Randomized Ranking Mechanism is identical
to that of the corresponding Ranking Mechanism under the shuffled strategy
profile. Formally, we have the following remark.

Remark 3. For any strategy profile ŝ, the corresponding shuffled strategy profile
γ(̂s)=

�

â,γ(π̂)
�

and any w ∈W we have

gRRM,w(̂s) ∼ gRM,w(γ(̂s)).

Definition 14 and Remark 3 allow Randomized Ranking Mechanisms to in-
herit many of the properties of Ranking Mechanisms. In particular, we have the
following proposition analogous to Proposition 6.

Proposition 9. The sincere strategy profile is a Bayes-Nash equilibrium of any
Randomized Ranking Mechanism.

Proof. See Appendix.
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The logic of the proof is as follows. First, every agent finds it optimal to sin-
cerely report his ordinal type because shuffling only affects the reported ranking.
Second, neither the shuffling probability nor the shuffling lottery depend on an
agent’s reported ranking. Therefore every agent only considers the case in which
his reported ranking is not shuffled. But in expectation the shuffled report pro-
file of the sincere rankings of all other agents is uniformly distributed and an
agent has no incentive to deviate from the sincere strategy by the same logic as
in the proof of Proposition 6.

It is straightforward to see that Proposition 9 continues to hold for choices
of shuffling probabilities larger than the minimal choice defined in Defintion 12,
as long as we also adjust the shuffling lotteries as in Definition 13. The following
remark illustrates the optimality of the minimal choice in Definition 12 from an
ex-ante welfare perspective.

Remark 4. To illustrate the optimality of a minimal choice of α (together with
corresponding shuffling lottery defined in Definition 13) rewrite ex-ante expected
welfare as
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,

where s̃−i = (
∗
ai,γi(

∗
πi))−i denotes the shuffled strategy profile of all agents but agent

i. For all i and ui ∈ Ui expression (∗) is weakly larger than expression (∗∗) by Propo-
sition 6 and both are independent of α−i and β−i as long as s̃−i ∼ Uniform(M−i).
Thus α chosen minimally (subject to achieving uniformity) maximizes ex-ante ex-
pected welfare for any weight vector.

The shuffling probabilities in Definition 12 are not only desirable in terms
of ex-ante expected welfare, but also ensure that if an agent’s type distribution
is Ranking Uniform no randomization is introduced. In particular, we have the
following remark.

Remark 5. Under Assumption 3, any Randomized Ranking Mechanism collapses
to the corresponding Ranking Mechanism.

In the next section we turn to the optimal choice of the weight vector. We
implicitly assume that agents report sincerely whenever we evaluate the perfor-
mance of any Randomized Ranking Mechanism.
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3.6.4 The Optimal Randomized Ranking Mechanism

Having established sincere equilibrium behavior this section compares the ex-
ante welfare of different Randomized Ranking Mechanisms. For any fixed num-
ber of agents and decision problems we derive the ex-ante efficient Random-
ized Ranking Mechanism and provide a closed form solution for the associated
weight vector. The optimal Randomized Ranking Mechanism ex-ante dominates
Separate Majority Voting.

The intuition is analogous to that in Section 3.5.4. What weight should the
mechanism assign to an agent’s vote based on his shuffled ranking? Intuitively,
the weight should correspond to an agent’s expected utility from implementing
the reform conditional on his report. However, the assigned weights can neither
discriminate between agents or problems nor can they depend on the realization
of the randomization or the choice of the shuffle lottery. The following definition
generalizes Definition 10.

Definition 15. The efficient weight vector ∗∗w ∈W is given by
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for l= 1, ..., d, where
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�uk
i

�

�

(l:d) denotes the l-th (out of d) order statistic of the pref-
erence intensity
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�uk
i
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� and Pβi

�

π̃k
i = l

�

:=
∑

πi:π
k
i=l β

πi
i is defined as the probability

that problem k is ranked on l-th position through shuffling lottery βi. We refer to
(M , gRRM,

∗∗
w) as the optimal Randomized Ranking Mechanism.

Before providing intuition we justify Definition 15 by the following proposi-
tion.

Proposition 10. The optimal Randomized Ranking Mechanism is ex-ante Pareto
efficient in the class of Randomized Ranking Mechanisms.

Proof. See Appendix.

Proposition 10 follows from suitably rewriting ex-ante expected welfare. The
intuition behind Proposition 10 and Definition 15 is as follows. For every agent i
the efficient l-th weight trades-off two cases. First, with probability 1−αi agent
i’s report is sincere and did not get shuffled. In this case it is efficient to set the
l-th weight for agent i to the expected value of his l-th highest preference in-
tensity under the sincere strategy. Because we allow for different distributions
across problems the expected value of the l-th highest order statistic for a fixed
decision problem may vary across problems. The ex-ante expected value of the
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l-th highest preference intensity under the sincere strategy thus weights all ex-
pected l-th order statistics by their respective sincere probability, that is, by the
probability that an agent sincerely ranks that problem at position l. Second, with
probability αi agent i’s ranking gets shuffled. In this case – since the shuffle lot-
tery is uninformative about the preference intensity – the efficient l-th weight
corresponds to the unconditional expected preference intensity. Again, the ex-
pected preference intensity may vary across problems and needs to be weighted
by the probability that a problem is ranked at the l-th position by the shuffling
lottery βi of agent i. Lastly, since we restrict attention to anonymous mechanism
the efficient weight vector cannot depend on an agent’s identity. It is therefore
efficient to take the average over all “agent-specific” efficient weights outlined
above.11

It is further instructive to consider the following special case. Under Assump-
tion 3, the shuffling probabilities are zero and Definition 15 simplifies.

Remark 6. Under Assumption 3, the optimal Randomized Ranking Mechanism
corresponds to the Ranking Mechanism with weight vector ∗∗w ∈W given by

∗∗
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n · d
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�

for l= 1, ..., d.

Remark 6 generalizes Definition 10 of the optimal weight vector in the iden-
tical case of Section 3.5 by allowing for different type distributions between
agents and across problems as long as Assumption 3 is satisfied. In this case the
efficient l-th weight corresponds to the expected value of the l-th highest prefer-
ence intensity averaged across all agents and problems. By Definition 14 of the
Randomized Ranking Mechanism the randomization procedure only shuffles
the reported ranking. Thus it has no effect for constant weight vectors for which
the order is irrelevant. This implies that the Randomized Ranking Mechanism
with weight vector w= (1, ..., 1) implements the same outcome as Separate Ma-
jority Voting. Therefore Proposition 10 implies that the optimal Randomized
Ranking Mechanism ex-ante dominates Separate Majority Voting.

Corollary 4. The optimal Randomized Ranking Mechanism ex-ante dominates
Separate Majority Voting.

Analogously to Section 3.5.4 the optimal Randomized Ranking Mechanism
dominates Separate Majority Voting in the weak sense of Definition 4. The fol-
lowing remark follows from the same logic as Remark 1 in Section 3.5.4 and
guarantees the welfare improvement to be strict. The Randomized Ranking

11 All our results readily extend to the case in which we drop the anonymity requirement and
allow for agent-specific weights.
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Mechanism and Separate Majority Voting differ if there exists a report profile
such that a strong minority overturns a weak majority. Formally, we have the
following remark.

Remark 7. The optimal Randomized Ranking Mechanism strictly increases ex-
ante expected welfare over Separate Majority Voting if the number of agents n ∈ N,
the number of decision problems d ∈ N and the distribution of types is such that

jn
2

k

· ∗∗wd >
ln

2

m

· ∗∗w1. (3.3)

The intuition is analogous to Section 3.5.4. Condition (3.3) in Remark 7
ensures that the optimal Randomized Ranking Mechanism dominates Separate
Majority Voting not merely by more efficient resolution of ties, but also by allow-
ing strongminorities to overturn weakmajorities therebymitigating the Tyranny
of the Majority.

Note that in ourmodified example in Section 3.6.1 the efficient weight vector
equals (0.455,1.041). It allows for overturning by satisfying Condition (3.3)
in Remark 7 for three agents and two decision problems and therefore strictly
improves upon Separate Majority Voting.

3.7 Concluding Remarks

In this paper we show that among strategy-proof mechanisms Separate Majority
Voting is ex-ante efficient and there is no benefit in coupling binary decisions.
When moving to the class of incentive compatible mechanisms full efficiency
remains unachievable for a finite number of decision problems but one can im-
prove upon Separate Majority Voting.

In order to do so, we study a class of Ranking Mechanisms. A Ranking Mech-
anism corresponds to a simple weighted voting procedure, in which agents are
free to distribute weights across problems and alternatives. For the case of iden-
tically distributed preferences over problems any Ranking Mechanism admits an
intuitive equilibrium strategy. Agents rank problems according to the absolute
difference in utilities between alternatives, i.e. by their preference intensities.
We solve for the ex-ante efficient Ranking Mechanism and give a close-form so-
lution for the corresponding optimal weight vector. The optimal Ranking Mech-
anism ex-ante dominates Separate Majority Voting and achieves full efficiency
in the limit as the number of decision problems goes to infinity. In the case of
non-identically distributed problems we introduce a randomization procedure
which sustains sincere equilibrium behavior. Incentives are preserved by ensur-
ing that from the perspective of every agent all priority rankings of all other
agents are equally likely. We provide a closed-form solution for the ex-ante effi-
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cient weight vector and prove that the optimal Randomized RankingMechanism
ex-ante dominates Separate Majority Voting.

All our results hold for an arbitrary number of agents and decisions thereby
complementing mechanisms in the previous literature, which work well for an
infinite number of decisions (Jackson and Sonnenschein (2007)) or a large
enough number of agents (Casella and Gelman (2008)). Moreover the optimal
(Randomized) Ranking Mechanism represents - to the best of our knowledge
- the first mechanism which successfully couples non-identically distributed bi-
nary decision problems, induces intuitive equilibrium behavior and dominates
Separate Majority Voting for any number of agents and problems.

Throughout this work we restricted attention to anonymous mechanisms.
From an ex-ante welfare perspective it might be desirable to discriminate be-
tween agents. All of our analysis readily extends to the case of allowing for
agent-specific weights. The optimal (Randomized) Ranking Mechanism is not
without its weaknesses. In particular, it relies on a strong knowledge assumption
regarding the underlying type distributions.
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3.A Appendix: Proofs

Proof of Proposition 5. The following corollary is a straightforward adoption
of Proposition 1 in Hortala-Vallve (2010) for the case of incentive compatibility.

Definition 16. The expected indirect utility function Vi :Ui→ R of agent i under
mechanism (U , g) is defined by Vi(ui)=

∑d
k=1 uk

i ·E−i[gk(ui, u−i)].

Corollary 5 (Hortala-Vallve (2010)). Amechanism (U , g) is incentive compatible
if and only if agents’ expected indirect utilities are homogeneous of degree one and
convex.
That is, Vi(λ · ui)= λ · Vi(ui) for λ≥ 0, ui ∈ Ui and is convex in ui.

For any incentive compatible mechanism (U, g) it follows that

E−i [gk(ui, u−i)] = E−i [gk(λ · ui, u−i)] (3.4)

for every i ∈ {1, ..., n}, every k ∈ {1, ..., d}, every ui ∈ Ui and every λ≥ 0.
Equation (3.4) states that from agent i’s perspective the expected outcome

of the mechanism is identical on proportional utility types. In other words, pro-
portional types of agent i are bunched in expectation.

To prove Proposition 5 suppose for sake of contradiction that g is incentive
compatible and achieves full efficiency. By the above g bunches proportional
types in expectation. Consider two cases depending on whether or not Equation
(3.4) holds pointwise:

Case 1: Equation (3.4) holds pointwise everywhere, that is, proportional
types are bunched type by type. It is enough to consider the case of two agents
and one decision problem. For one decision problem all possible types are pro-
portional and hence g must be constant, which is not optimal. The same line of
reasoning extends to settings with more agents and more decision problems.

Case 2: Equation (3.4) does not hold pointwise everywhere, implying that
there exist i ∈ {1, ..., n}, k ∈ {1, ..., d}, ui ∈ Ui with uk

i 6= 0, λ ∈ R++ \ {1} and
u′−i ∈ U−i such that gk(ui, u′−i) 6= gk(λ · ui, u′−i). Consider the case uk

i > 0 and
gk(ui, u′−i)> gk(λ · ui, u′−i). All other cases follow by an analogous argument. In
order for Equation (3.4) to be satisfied, there must exist u′′−i ∈ U−i such that
gk(ui, u′′−i)< gk(λ · ui, u′′−i). The fact that g achieves full efficiency necessitates
that for fixed u−i ∈ U−i the function gk(·, u−i) depends only on the value of
uk

i and not on the other components of ui. Further gk(·, u−i) has to be non-
decreasing in uk

i > 0. For λ > 1 this contradicts the first inequality, for λ < 1
the second.
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Proof of Proposition 6. Fix w ∈W and denote gRM,w by g. Formally, we need to
show that for all agents i ∈ N, all ui ∈ Ui and

∗
s−i =

� ∗
a−i,

∗
π−i

�

it holds that

∗
si(ui) =

� ∗
ai,

∗
πi

�

(ui) ∈ argmax
(ai,πi)

�

E−i

�

Vi(g((ai,πi),
∗
s−i))

�	

. (3.5)

The proof consists of two parts.
Part 1: For any message profile of the other agents m−i = (a−i,π−i) and any

fixed priority ranking πi agent i finds the strategy si = (
∗
ai,πi) weakly optimal.

Note that

Vi(g((ai,πi), m−i)) =
∑

k

uk
i · gk

��

ak
i ,πk

i

�

, mk
−i

�

(3.6)

for ui ∈ Ui and (ai,πi) ∈M. Since for all k ∈ D, all πk
i ∈ D and all m−i ∈M−i

gk

��

1,πk
i

�

, mk
−i

�

≥ gk

��

0,πk
i

�

, mk
−i

�

,

it follows that Equation (3.6) is maximized for

ak
i =

∗
ak

i =

(

ak
i = 1 if uk

i > 0

ak
i = 0 if uk

i ≤ 0.

Part 2: For the sincere strategy profile of the other agents ∗
s−i = (

∗
a−i,

∗
π−i)

and the sincere ∗
ai agent i finds the sincere priority ranking ∗

πi weakly optimal.
Exploiting uncorrelated types we have

E−i

�

Vi(g((
∗
ai,πi),

∗
s−i))|ui

�

= E−i

�

Vi(g((
∗
ai,πi),

∗
s−i))

�

=
∑

k:uk
i>0

uk
i · E−i

�

gk

��

1,πk
i

�

,
∗
sk
−i

��

+
∑

k:uk
i<0

uk
i · E−i

�

gk

��

0,πk
i

�

,
∗
sk
−i

��

(3.7)

for ui ∈ Ui and (
∗
ai,πi) ∈M. We decompose the message spaceM−i of all other

agents according to the outcome that would be implemented in the absence of
agent i. Formally, we define

M k,q
−i :=

§

m−i ∈ M−i

�

�

�gk

�

1
2

,πk
i , mk

−i

�

= q
ª

for q = 0,
1
2

,1.

The set M k,q
−i encompasses all message profiles of the other agents such that

without agent i outcome q ∈
�

0, 1
2 , 1

	

is implemented in problem k. Note that
by definition of gk the setM

k,q
−i is independent of πk

i which justifies the notation.
Using the fact that for all k ∈ D, all πk

i ∈ D and all m−i ∈M−i

gk
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1,πk
i

�

, mk
−i

�
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, mk
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with strict inequalities if gk

��1
2 ,πk

i

�

, mk
−i

�

= 1
2 . We write (3.7) as
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with C independent of πi. We further decompose the type space of all other
agents depending onwhether or not agent iwith priority rankingπk

i changes the
outcome in decision problem k. We splitM k,0

−i into three disjoint sets of reports
of other agents: the setM k,0

�

πk
i

�

such that the inclusion of agent i voting in
favor of the reform with a priority ranking πk

i does not change the outcome and
0 is still implemented in decision problem k and the sets T k,0
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on which the outcome changes to 1
2 and 1, respectively. Formally,
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As made explicit by the notation the decomposition depends on πk
i . Analogously,

we defineM k,1
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for all k ∈ D, all π̃k
i < π
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i ∈ D and q= 0,1. By definition of g we have for all
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Using the above construction we write (3.8) as
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with C̃ independent of πi. Exploiting symmetry and independence assumptions
the crucial step in the proof is to realize that every report profile of other
agents is equally probable. Formally, the fact that ρk

i is centered around zero
for all k ∈ D and independence of {uk

i }k imply that ∗
ai ∼ Uniform
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which implies that (3.12) is maximized for
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Proof of Proposition 7. Let M be defined as in Definition 7. For any mecha-
nism (M , g), not necessarily a Ranking Mechanism, ex-ante expected welfare
is given by
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which implies that the is no loss in restricting attention to separable mecha-
nisms and g≡ gRM,

∗
w from Definition 9 and 10 is efficient.

Proof of Proposition 8. We rewrite the sum of ex-ante expected utilities in
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∗
w

k as
∑

i

E
h

uk
i · g

RM,
∗
w

k

�∗
sk
�

i

=
∑

mk

�

P
�∗
sk = mk

�

· gRM,
∗
w

k

�

mk
�

·
∑

i

Ei

�

uk
i |

∗
sk
i = mk

i

�

�

=
∑

(ak,πk)

�

P
�∗
sk =

�

ak,πk
��

· max

¨

0,
∑

i

�

2ak
i − 1

�

· Ei

h

�

�uk
i

�

��

πk
i :d
�

i

«�

=
1

2n · dn
·

∑

ak∈{0,1}n

d
∑

πk
1=1

· · ·
d
∑

πk
n=1

max

¨

0,
∑

i

�

2ak
i − 1

�

· Ei

h

�

�uk
i

�

��

πk
i :d
�

i

«

=
1
2n
·

∑

ak∈{0,1}n

∫ 1

0

· · ·
∫ 1

0

max

¨

0,
∑

i

�

2ak
i − 1

�

· Ei

h

�

�uk
i

�

��

dd·πk
i e:d

�

i

«

dπk
1 . . . dπk

n,



56 | 3 Ranking Mechanisms for Coupled Binary Decisions

where we used the fact that ∗sk ∼ Uniform
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where Φ−1 denotes the inverse cdf of the absolute value of agents’ valuations.
The crucial step in the proof makes use of the following result on the asymptotic
convergence of order statistics. For any random variable X with cdf F and pdf f
and any p ∈ [0, 1] it holds that X(dd·pe:d) ∼ AN

�

F−1(p), p·(1−p)
d·f(F−1(p))2

�

at all points
such that f

�

F−1(p)
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6= 0, see Ahsanullah, Nevzorov, and Shakil (2013), page
111. Since (3.13) is the sum of ex-ante expected utility levels that correspond
to full efficiency for problem k this concludes the proof.

Proof of Proposition 9. Fix w ∈W. We need to show that for all agents i ∈ N,
all ui ∈ Ui and
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By construction s̃−i ∼ Uniform(M−i) and therefore expression (∗) is max-
imized by ∗

si by Proposition 6. Further expression (∗∗) is independent of the
reported πi and maximized by ∗

ai by the same logic as Part 1 of Proposition 6.
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Proof of Proposition 10. We write ex-ante expected welfare under the Ran-
domized Ranking Mechanism (M , gRRM,w) as
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Let M̄ denote the set of all possible report profiles of all agents
for a single decision problem, i.e. M̄ =
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{0, 1}, D
�⊗n. Further, we divide
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. We refer to [m̄] as the
equivalence class and its representative interchangeably and denote by [M̄] the
set of all equivalence classes. We write (3.14) as
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(3.15)

where we used that gRM,w is anonymous and that for all i, j ∈ N there exist (n−
1)! permutations in σ(N) sending i onto j. After suitably rearranging (3.15)
Definition 9 gives us
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Fake Experts

Joint with Patrick Lahr

4.1 Introduction

Consider a set of physicians and researchers who help to formulate a new guide-
line on basic life support.1 All members of this scientific advisory board have the
same goal, to make recommendations that help to save as many lives as possi-
ble. Some physicians on the board might have more relevant information on the
best procedure than others due to their research activities or their specialty. To
formulate the guideline it is in everyone’s interest that all members report their
privately known competence and to weight members by their expertise.

As a second example consider a scientific advisory board that recommends
to a regulatory body whether or not to approve a drug designed to prevent
heart attacks. Besides varying information on the efficacy of the drug board
members might have privately known commercial interests due to relations to
pharmaceutical companies.2 These board members have an incentive to present
their assessment in a way that sways the decision in their preferred direction.
Giving board members more weight based on self-reported expertise can lead
to manipulation due to private interests.

1 For example, the sequence of steps for cardiopulmonary resuscitation has been changed in the
2010 American Heart Association guidelines (see Field et al. (2010)) from A(irway)-B(reathing)-
C(hest compressions) to C-A-B.

2 Piller (2018) discusses in an article in Science the specific case of approval of a drug designed
to prevent heart attacks and strokes. He finds that one physician in the admission panel received
more than $2 million for various purposes from the drug manufacturing pharmaceutical company.
Further, Piller (2018) documents that the majority of 107 physicians who advised the Food and
Drug Administration in the United States on the approval of 28 drugs from 2008 to 2014 received
payments from makers of the drugs or from competing firms.
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We analyze decision problems of this kind with and without private interests
in a multi-sender cheap talk game in which senders have private signals of het-
erogeneous informativeness about a binary state of the world. The senders repre-
sent the scientific advisory board. The receiver processes the senders’ messages
and takes an action that aims to match the state of the world. She represents the
regulatory body which is uncertain about private interests of senders. In many
fields, such bodies regularly seek scientific advice, for example in economics,
medicine, agriculture or ecology.

We show that under common interests the receiver can weight all qualities
of signals differently. In the receiver-optimal equilibrium, senders transmit all
information and the receiver acts as if senders’ information were public. Further,
specialization, i.e. more heterogeneous signal quality, improves the receiver’s
ability to match the state. In other words, it is better for the receiver to face few
senders with precise and many with imprecise signals instead of facing senders
who all have medium precise information.

We continue to study the effect of private interests, in the sense that senders
might prefer a decision irrespective of the state of the world. We assume that
conflicts of interests are private information. Other senders or the receiver are
only aware that these conflicts occur with a certain probability. We show that
under private interests, complete differentiation of signal qualities breaks down.
Senders whose preferences are not aligned with the receiver’s claim to have
highly informative signals about the state of the world. These fake experts pre-
vent optimal signal discrimination and devalue messages sent by senders with
the most informative signals. This diminishes the gains from specialization and
average individual precision becomes more important.

If privately known preferences are sufficiently heterogeneous, any differ-
entiating weighting of messages breaks down, and the receiver uses only two
weights in the optimal equilibrium. Private interests create incentives to exag-
gerate recommendations in a way that prevents any transmission of information
that is finer than the mere direction of the recommended decision. An informa-
tion aggregation setting with only two messages can be interpreted as voting. In
a world with strong private preferences voting constitutes the best mechanism
to aggregate information because it is robust to manipulation.

The rest of the paper is organized as follows. Section 4.2 reviews related
literature on cheap talk and information aggregation. The formal model is pre-
sented in Section 4.3. Section 4.4 studies the common interests case. We solve
for the receiver optimal equilibrium and introduce the concept of specialization.
We analyze the case with private interests in Section 4.5. We solve for the re-
ceiver optimal equilibrium and study the effect of private preferences. We find
that the role of specialization decreases and that the role of average individual
precision increases when preferences become more heterogeneous. Further, we
show that voting becomes the best way to aggregate information if preferences
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are sufficiently heterogeneous. Section 4.6 concludes and discusses open ques-
tions and possible future lines of research building on our work.

4.2 Related Literature

Our work is connected to the literature on cheap talk and to the literature on
information aggregation in voting. The former builds on the seminal work of
Crawford and Sobel (1982) and analyzes strategic communication between a
better-informed sender and a receiver whose action determines the payoff of
both. In their original setup, the sender has private and perfect information on
a one-dimensional state of the world and a bias known to the receiver.

The approach has been generalized to settings with multiple senders. Gilli-
gan and Krehbiel (1989) study a model in which two privately and perfectly
informed senders with publicly known biases communicate with a receiver. The
focus of their analysis is the comparison of three communication protocols that
comprise different forms of cheap talk. Similarly, Krishna and Morgan (2001)
study a setting with two senders that sequentially send public messages to a
receiver. The degree of information revelation depends on whether the senders
have aligned or opposing biases.

Austen-Smith (1990) is the first who studies a cheap talk problem in which
senders are imperfectly informed about a binary state of the world. While he
identifies circumstances under which a cheap talk phase alters the decision,
Wolinsky (2002) solves for the most efficient communication structure.

We build on these approaches by studying a multi-sender cheap talk game
with imperfectly informed senders. However, a key difference between all
mentioned papers and our work is that we do not assume that biases are known
to the receiver. In contrast, we understand biases as a private characteristic of
senders. We are not the first who model bias as private information. However, in
other models the bias is often directly payoff relevant for the receiver whereas it
only obfuscates useful information in our setting. For example Alonso, Dessein,
and Matouschek (2008) study under which circumstances a corporation should
delegate certain decisions to its regional subsidiaries in order to make it more
responsive to privately held information by the subsidiaries. Similarly, Hummel,
Morgan, and Stocken (2013) model a firm that engages in market research.
Each individual respondent wants the firm to match his personal type while
the firm wants to match the average type of respondents. Misalignment of
preferences arises endogenously and is unknown to the receiver.

The literature on information aggregation in voting goes back to Condorcet
(1785) and his famous jury theorem, stating that large groups of independently
informed agents select the correct alternative with almost certainty. He assumes
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that agents vote sincerely while Feddersen and Pesendorfer (1997) establish a
similar result for strategic agents. They show that privately held information
leads to the same decision as under public information.

Some papers allow for a bigger message space to aggregate information.
For example, McMurray (2017) studies a common interests election of ex-ante
symmetric candidates by a fixed number of heterogeneously informed agents.
In equilibrium voters coordinate on specific candidates to transmit information.
His model can be interpreted as a cheap talk game with a restricted number of
messages. If the number of candidates becomes large the model converges to
our common interests setting.

The above papers focus on information aggregation in large electorates. They
do not shed light on the (in)efficiency with which information is aggregated, par-
ticularly when the electorate is finite and heterogeneous. Azrieli (2018b) stud-
ies this question. He analyzes the loss of anonymous voting rules if agents are
publicly known to be differently well informed. The common-value analysis is
closely related to ours. However, we assume that signals are private information
and are interested in the interplay with private interests.

4.3 The Model

There is a set of senders {1, ..., n} and a receiver indexed by 0. Each sender
i receives an independently and identically distributed signal about an un-
known state of the world ω= {0, 1}. There is a common prior p0 = P[ω=
1] ∈ (0, 1) that the state of the world is 1. Each signal induces a posterior
pi = P[ω= 1|signal] distributed according to a probability mass function µω
conditional on the state of the world being ω. The ex-ante posterior distribu-
tion µ= (1− p0)µ0 + p0µ1 is consistent with the common prior p0. We assume
that the information structure is such that it leads to a finite number of possible
posteriors P = supp µ. For some results we assume that no signal is not infor-
mative at all, i.e. p0 /∈ P . We call a distribution µ that fulfills this assumption
never ignorant. The receiver gets no signal, but shares the prior.

In addition to different signals players are also heterogeneous with respect
to their preferences as described by a preference parameter λ ∈ {0,λ0, 1} with
λ0 ∈ (0, 1). Each sender i independently draws a preference parameter λi that is
also independent of the posteriors and distributed according to probability mass
function γ. The decision maker has commonly known preference parameter λ0.
We call the tuple (pi,λi) the type of sender i and µ× γ the distribution over
types.

After observing the signal each sender i simultaneously sends a cheap talk
message ti ∈ [0, 1] to the receiver. We denote the potentially mixed strategy by
mi :P × {0,λ0, 1}→∆[0,1] where ∆[0,1] denotes the set of all probability
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measures over [0, 1]. We denote the probability that sender i with type (pi,λi)
sends message ti by mi(pi,λi)(ti). We call a strategy truthful if mi(pi,λi)(pi)=
1 for all types (pi,λi). The tuple of messages of all senders is denoted by t=
(t1, ..., tn).

The receiver processes the messages of all senders according to Bayes’ rule.
We denote the belief of the receiver accounting only for sender i’s message ti

by q(ti) and call it the virtual posterior of sender i.3 The virtual posterior of the
receiver incorporating the messages t of all senders is denoted by q(t). After get-
ting and processing all messages the receiver takes an action a ∈ {0, 1}. Utilities
for senders and the receiver are given by

u(a,ω,λi) = (1 − λi)1{a = ω = 0} + λi1{a = ω = 1},

where 1{A} is the indicator function that is 1 if event A is true and 0 otherwise.
A player i prefers action 1 if and only if his belief that the state of the world

is one is larger or equal 1−λi. A higher preference parameter λi leads to a
higher utility of player i given that action and state are equal to one. Senders
with preference parameters 0 and 1 weakly prefer the action that matches their
preference parameter irrespective of the posterior. We call senders with these
preference parameters partisans. The remaining senders with λi = λ0 have the
same interests as the receiver. We call these senders advisors.

Before we proceed, we summarize the timing of the game. First, nature
draws a state of the world ω. Second, every sender i randomly draws a type
(pi,λi) according to the conditional type distribution µω × γ. Third, each
sender i sends a message ti to the receiver. Last, the receiver takes an action
a and payoffs realize. We assume that the receiver does not have commit-
ment, i.e. she can not credibly commit to a decision rule before getting the
messages of the senders.⁴ Consequently, we solve for perfect Bayesian equilibria.

The distribution of posteriors µ is a key object in our setting. We are in-
terested to explore the effect of the signal structure on the receiver’s ability to
match the state of the world. We introduce two concepts that allow us to com-
pare posterior distributions with respect to the utility of the receiver. The first
definition describes an incomplete order of distributions that is well known in
the literature.

3 Anticipating that senders play symmetric strategies in the optimal equilibrium, we drop the
subscript i of the virtual posterior qi(·) to simplify notation.

⁴ In particular, this excludes equilibria of the kind discussed in Gerardi, McLean, and Postle-
waite (2009).
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Definition 1. Let µ and ν two posterior distributions with cdfs F and G, respec-
tively. We say that µ is more informative than ν, denoted by µ� ν, if

∫ y

0

F(x)dx ≥
∫ y

0

G(x)dx for all y ∈ [0,1]. (4.1)

Blackwell (1951) established the concept of informativeness⁵ in the context
of decision problems. We remind the reader on some of his results in Appendix
4.B. By the common prior assumption both distribution have an expected value
of p0.

A second method to compare posterior distributions is by means of their
average individual precision.

Definition 2. The average individual precision π(µ) of a sender’s posterior distri-
bution µ is

π(µ) = E [|pi − p0|] .

The average individual precision of a distribution measures the expected
distance of the posterior from the prior p0. Mathematically, it is the first absolute
central moment. The greater the difference between prior and posterior the
more precise is the information of a sender. A distribution µ with π(µ)= 0 does
not contain any information at all whereas the maximal average individual
precision is 2p0(1− p0). Note that a higher average individual precision of µ
compared to ν is a necessary but not a sufficient condition for µ being more
informative than ν. In fact, in Section 4.4.2 we fix average individual precision
and specify distributions that are maximally and minimally informative.

In the following we split the analysis in two parts. We start to study the com-
mon interests case in Section 4.4. In the common interests case all players have
aligned preferences, i.e. γ(λ0)= 1 and γ(0)= γ(1)= 0. This special case of our
setting serves as a benchmark and allows us to get familiar with the concepts
introduced in Definitions 1 and 2. In Section 4.5 we proceed to the general case
in which we allow for private interests.

4.4 Common Interests Analysis

In this section we assume that players have common interests. In Subsection
4.4.1 we derive the receiver optimal perfect Bayesian equilibrium. We introduce
the concept of specialization in Subsection 4.4.2 and derive maximally and min-
imally specialized distributions.

⁵ The concept is also know in the literature as second order stochastic domination, i.e. µ is
second order stochastic dominated by ν if Condition (4.1) is fulfilled.
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4.4.1 Receiver Optimal Equilibrium

There are many perfect Bayesian equilibria in cheap talk games. In this subsec-
tion we derive an equilibrium that maximizes the utility of the receiver. In the
common interests case such an equilibrium maximizes the utility of the senders
too. We define a class of strategies for the receiver that plays a crucial role in
equilibrium.

Definition 3. A receiver follows a weighted majority rule if her strategy a :
[0,1]n→ {0,1} is of the form

a(t) =

(

1 if
∑n

i=1 w(ti) > τ

0 else

for messages t= (t1, ..., tn) of senders, a weighting function w : [0, 1]→ R, and a
threshold τ.

In a weighted majority rule the receiver transforms every message ti into
a weight w(ti) and takes decision 1 if the sum of weighted messages is larger
than a threshold τ. The next proposition derives the optimal equilibrium and
the corresponding weighting function.

Proposition 1. The following describes a receiver optimal perfect Bayesian equi-
librium:

• Senders play the truthful strategy, i.e. mi(pi,λ0)(pi)= 1 for all types (pi,λ0)
and all i ∈ {1, ..., n}

• The receiver calculates the virtual posterior q(ti)= ti for a message ti ∈ P
by Bayes’ rule

• The receiver’s virtual posterior of off-equilibrium messages ti /∈ P is given by
q(ti)= p0

• The receiver follows a weighted majority rule with weighting function

w(x) =

(

ln x
1−x − ln p0

1−p0
if x ∈ P

0 else

and threshold τ= −
�

ln λ0
1−λ0

+ ln p0
1−p0

�

Proof. See Appendix 4.A.

In the optimal equilibrium senders play the truthful strategy to transmit all
information to the receiver. The receiver behaves as if all private signals were
public and can base the decision on all available information. Hence, there can-
not be any equilibrium with higher payoffs for the receiver.⁶

⁶ McLennan (1998) studies optimality of equilibria in common interests games more generally.
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Figure 4.1.Weighting function for the common interests case

The strategy of the receiver is a generalization of the decision rule derived
in Theorem 1 in Nitzan and Paroush (1982). They study a non-strategic set-
ting with a symmetric prior p0 =

1
2 . In the proof of Proposition 1 the common

prior and the conditional iid posteriors allow to write the updating process of
the receiver as a product formula of posteriors. Applying the logarithm to the
equation gives the problem an additive structure. Every posterior can be mapped
into a weight that is the log-likelihood ratio of the posterior ln pi

1−pi
minus the

log-likelihood ratio of the prior ln p0
1−p0

. The threshold is the log-likelihood ratio

of the receiver’s preference parameter ln λ0
1−λ0

minus the log-likelihood ratio of
the prior ln p0

1−p0
. In this way the prior p0 is taken into account only once (in the

threshold) and all other weights are taken net of the information from the prior.
The log-likelihood ratio of the preference parameter ln λ0

1−λ0
guarantees that ac-

tion 1 is taken if and only if the final posterior q(t)⁷ is larger than (1−λ0).
Thus, the decision rule in the receiver optimal equilibrium can be interpreted
as a weighted majority rule with weighting function w(x)= ln x

1−x − ln p0
1−p0

and

threshold τ= −
�

ln λ0
1−λ0

+ ln p0
1−p0

�

.
Figure 4.1 illustrates the weighting function with prior p0 =

3
4 for the

common interests case. A posterior pi of sender i that equals the prior p0

⁷ By similar steps as in the proof of Proposition 1 we can write the virtual posterior q(t) of the
receiver as

q =
exp

�

∑n
i=1

�

ln pi
1−pi
− ln p0

1−p0

�

+ ln p0
1−p0

�

1 + exp
�

∑n
i=1

�

ln pi
1−pi
− ln p0

1−p0

�

+ ln p0
1−p0

�

=
(1 − p0)n−1

∏n
i=1 pi

(p0)n−1
∏n

i=1(1 − pi) + (1 − p0)n−1
∏n

i=1 pi

.
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gets weight 0 because it does not transmit any additional information. In
contrast, a posterior pi ∈ {0, 1} means that sender i perfectly knows the state
of the world. The information of this sender is sufficient to make an optimal
decision and he should outweigh all other senders. Thus, as pi goes to 1 (0)
the corresponding weight tends to∞ (−∞). The unrestrictedly high weight
encodes the extraordinary value of perfect information.

For the rest of this section we refer to the receiver optimal equilibrium when
we assess different distributions of sender types. The ex-ante expected utility
of the receiver u?(q(t)) with the virtual posterior q(t) in the receiver optimal
equilibrium is given by

u?(q) =

(

qλ0 if q > 1 − λ0

(1 − q)(1 − λ0) else.

We now turn to comparative statics building on the receiver optimal equilib-
rium. We employ Definition 1 and 2 to introduce the concept of specialization.

4.4.2 Specialization

In Definition 2 we define average individual precision as the expected distance
of the posterior from the prior p0. In this subsection we study distributions that
have the same average individual precision. We show that there are distributions
with the same average individual precision but yet result in different expected
utilities for the receiver. More concretely, we hold average individual precision
fixed and construct distributions of different informativeness according to Defi-
nition 1. If two distributions have the same average individual precision, we call
a distribution that is more informative than the other one more specialized. A
specialized distribution has the feature that there are senders who have a very
precise signal about the state. On the downside, there are also senders with a
very imprecise signal. With other words, there is a small probability of knowing
much and a high probability of knowing little. This is in contrast to not special-
ized distributions where all senders have medium precise information.

We start to derive the most specialized distribution with a given average
individual precision. Then we repeat this exercise for the least specialized
distribution. Both distributions take simple forms so that we can use them to
bound the utility of the receiver.

Consider posterior distribution µ with cdf F. We derive the most specialized
distribution µ̂ given average individual precision π(µ). To determine the most
specialized distribution we sequentially apply the operation of mean-preserving
spreads. Performing a mean-preserving spread makes a distribution more infor-
mative as proven in Theorem 12.2.2 (5) in Blackwell and Girshick (1979). The
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average individual precision does not change if a mean preserving spread does
not shift mass from the interval [0, p0) to the interval (p0, 1] or vice versa. Tak-
ing this into account we apply mean-preserving spreads until all mass is dis-
tributed on the set {0, p0, 1}. If a distribution hasmass on the open interval (0, p0)
((p0, 1)) it is possible to perform a mean-preserving spread that distributes the
mass on 0 and p0 (p0 and 1). The most specialized distribution µ̂ with average
individual precision π(µ) has to fulfill the following three conditions.

1. µ̂(0)+ µ̂(p0)+ µ̂(1)= 1

2. 0 · µ̂(0)+ p0 · µ̂(p0)+ 1 · µ̂(1)= p0

3. p0 · µ̂(0)+ (1− p0) · µ̂(1)= π(µ)

The first condition guarantees that all mass is distributed on {0, p0, 1}, the
second condition requires that the distribution is consistent with the common
prior p0 and the third condition ensures that the average individual precision is
π(µ). The following lemma contains the solution to this system of equations.

Lemma 1. Let µ be a posterior distribution. The most specialized posterior distri-
bution µ̂ with an average individual precision π(µ) is characterized by

µ̂(0) =
π(µ)
2p0

,

µ̂(p0) = 1 −
π(µ)

2p0(1 − p0)
, and

µ̂(1) =
π(µ)

2(1 − p0)
.

In the optimal equilibrium the most specialized distribution µ̂ leads to a spe-
cific kind of information aggregation. The message of a sender counts nothing
unless he knows the state of the world with certainty. The information of one
such sender is sufficient for the receiver to take an action that matches the state.

The derivation of the least specialized posterior distribution µ̄ is similar. A
sequential application of garblings leads to the least informative distribution by
Theorem 12.2.2 in Blackwell and Girshick (1979) (see Proposition A in Ap-
pendix 4.B). The process terminates if there are only two mass points pl and
pr, one point left of the prior and one point right of it. µ̄(l) and µ̄(r) denote the
probability mass on points pl and pr, respectively. To keep average individual
precision π(µ) constant no garbling can combine mass from the two intervals
[0, p0) and (p0, 1]. To simplify the analysis, we assume that µ is never ignorant.
Without this assumption the least specialized posterior distribution is not unique.
In fact, there is a continuum of distributions that are consistent with the com-
mon prior p0, have individual precision π(µ), and have only two mass points.
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We are interested in the distribution that can constructed from µ. We call this
distribution attainable from µ. The following four conditions characterize the
least specialized distribution that is attainable from µ and has average individ-
ual precision π(µ).

1. µ̄(l)+ µ̄(r)= 1

2. pl · µ̄(l)+ pr · µ̄(r)= p0

3. (p0 − pl) · µ̄(l)+ (pr − p0) · µ̄(r)= π(µ)

4. µ̄(l)= F(p0)

The first two conditions are analogous to the first two conditions of the most
specialized distribution. The third and fourth condition ensure that average in-
dividual precision is π(µ) and that no mass is shifted between the intervals
[0, p0) and (p0, 1]. A violation of these constraints would lead to a different av-
erage individual precision or to a distribution that is not attainable from µ. The
next lemma solves the above system of equations.

Lemma 2. Let µ be a posterior distribution with cdf F. The least specialized poste-
rior distribution µ̄ that is attainable from µ with average individual precision π(µ)
is characterized by

µ̄(l) = F(p0),

pl =
2F(p0)p0 − π(µ)

F(p0)
,

µ̄(r) = 1 − F(p0), and

pr =
2p0 − 2F(p0)p0 + π(µ)

2 − 2F(p0)
.

A posterior distribution with only two mass points implies that senders use
only two messages in the optimal equilibrium. An information aggregation set-
ting with just two messages can be interpreted as voting for one or the other
alternative. Thus, in the optimal equilibrium, a posterior distribution with two
mass points corresponds to a qualified majority rule. Specifically, in the optimal
equilibrium the receiver takes action 1 if

∑n
i=1 w(ti)> τ with w(ti) and τ as in

Proposition 1. If the distribution has only two mass points pl and pr there are
only two weights αl = w(pl) and αr = w(pr) in equilibrium. We denote the num-
ber of senders whose message is left (right) of the prior by nl (nr). The receiver
takes action 1 if

nlαl + nrαr > τ.
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This corresponds to a qualified majority rule with threshold n1(n) where n is
the total number of senders. The receiver takes action 1 if and only if

n1(n) >
τ − nαl

αr − αl
.

In remainder of this subsection we apply the above insights to obtain bounds
of the receiver’s utility. As discussed, the least and most specialized distributions
µ̂ and µ̄ have a particularly simple form. By Theorem 12.2.2 (4) in Blackwell and
Girshick (1979) (see Proposition C in Appendix 4.B) the utility of the receiver
is increasing in the specialization of posteriors. Thus, the next proposition sum-
marizes Lemma 1 and 2 with respect to the utility of the receiver.

Proposition 2. Let µ be a posterior distribution. The utility of the receiver facing
senders with posterior distribution µ is bounded above by the utility of a receiver
facing senders with µ̂ and below by the utility of a receiver facing senders with µ̄.

We illustrate Proposition 2 idea with help of Figure 4.2. The y-axis repre-
sents the expected utility of the receiver and the x-axis the number of senders.
The receiver matches the state of the world with probability close to 1 as the
number of senders tends to infinity. This holds for any distribution µ with pos-
itive average individual precision π(µ). Thus, the blue line (representing the
most specialized distribution) and the red line (representing the least special-
ized distribution) converge to the ex-ante expected utility in a setting where the
state of the world is known by the receiver. If the number of senders is finite, the
value of specialization is visible. The benefit of a sender that knows the state of
the world perfectly is higher than the loss of the reduced probability with which
such sender exists. Technically, this is a result of the concavity (convexity) of
the weighting function w(x)= ln x

1−x − ln p0
1−p0

for posteriors pi < p0 (pi > p0).
On the other extreme, the step-wise form of least specialized distribution (red
line) can be explained by the voting analogy. Ignoring a randomly drawn sender
if the number of senders is even is the same as fair tie-breaking. Thus, a qualified
majority rule with fair tie-breaking and an even number of senders n contains
the same information as a qualified majority rule with n− 1 senders.

We now turn to the general setting that allows for private interests. We return
to a discussion of specialization in the general setting in Subsection 4.5.2.

4.5 Fake Experts - Private Interests Analysis

In this section we turn to the case with private interests. In Subsection 4.5.1
we solve for the receiver optimal equilibrium. In Subsection 4.5.2 we proceed
to study effects of private interests in the receiver optimal equilibrium. We find
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Figure 4.2. Upper and lower bounds for the receiver’s utility for n senders with posterior
distribution m that is symmetric around the prior p0 = 1

2 , average individual precision
p(m) = 0.1 and l0 = 1

2 . The blue line is represents the utility of the most specialized
distribution m̂ and the red line the least specialized distribution m̄.

that voting is optimal if preferences are sufficiently heterogeneous. Further, av-
erage individual precision becomes more and specialization less important as
the number of partisans increases.

4.5.1 Receiver Optimal Equilibrium

We start by sketching that the strategies and beliefs in Proposition 1 do no longer
form an equilibrium in the presence of private interests. Partisans can only get
positive utility if the action of the receiver matches their preference type. Fixing
the strategy of the receiver, partisans maximize the probability that their pre-
ferred action is taken by sending the message with the highest possible weight
in the respective direction. But then the receiver cannot rationally believe that
these messages only come from senders who indeed received the according sig-
nals. Consequently, players adapt their strategies. The next proposition summa-
rizes the strategies in the receiver optimal equilibrium.
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Proposition 3. The following describes a receiver optimal perfect Bayesian equi-
librium. There exists unique expertise bounds b, b ∈ [0,1] that describe the lowest
and highest possible virtual posterior, respectively.

• Advisors message truthfully:

mi(pi,λ0)(ti) =

(

1 if ti = pi

0 else

• 0-partisans imitate the lowest posteriors ti ≤ b:

mi(pi, 0)(ti) =

(

γ(λ0)µ(ti)(b−ti)
γ(0)(p0−b) if ti ∈ P ∧ ti ≤ b

0 else

• 1-partisans imitate the highest posteriors ti ≥ b:

mi(pi, 1)(ti) =







γ(λ0)µ(ti)(ti−b)

γ(1)(b−p0)
if ti ∈ P ∧ ti ≥ b

0 else

• Given message ti the receiver’s virtual posterior q(ti) is given by

q(ti) =























b if ti ∈ P ∧ ti < b

ti if ti ∈ P ∧ ti ∈ [b, b]

b if ti ∈ P ∧ ti > b

p0 else

• The receiver uses weighted majority rule with weight function

w(x) =























ln
b

1−b − ln p0
1−p0

if x ∈ P ∧ x < b

ln x
1−x − ln p0

1−p0
if x ∈ P ∧ x ∈ [b, b]

ln b
1−b
− ln p0

1−p0
if x ∈ P ∧ x > b

0 else

and threshold τ= −
�

ln λ0
1−λ0

+ ln p0
1−p0

�
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Figure 4.3.Weighting function for the private interests case

In the equilibrium advisors play the truthful strategy as in Proposition 1. It
is in their best interest to transmit as much information as possible. Partisans
interfere in this communication. Their strategy is independent of their signals.
They do not transmit any information to the receiver but maximize their in-
fluence by imitating advisors with the most informative signals. Therefore, the
receiver needs to discount these messages. In this way expertise bounds b and b
arise. They constitute bounds on the highest possible precision of messages. The
weight w(b) (w(b)) is the lowest (highest) weight used in the weighted majority
rule of the receiver. Between the expertise bounds communication between advi-
sors and the receiver is noise-free because partisans do not imitate advisors with
imprecise signals. Thus, communication is perfect within these bounds as in the
equilibrium from Proposition 1. All off-equilibrium messages are not weighted
at all. Figure 4.3 depicts an example of a weighting function of virtual posteri-
ors with lower expertise bound b= 1

4 , upper expertise bound b= 7
8 , and prior

p0 =
3
4 . The dashed line is the weighting function of the receiver in the absence

of partisans.
Some parts of the proof of Proposition 3 provide insights to the general struc-

ture of the problem. Therefore, we present the main ideas of the proof in the
main text. Technical details and less interesting steps are relegated to Appendix
4.A. Specifically, we split the proof of Proposition 3 into three parts. First, we
show that the strategies are indeed a perfect Bayesian equilibrium. This part
can be found in Appendix 4.A. Then, we argue in two steps that no other equi-
librium is better for the receiver. The first step introduces a technique that allows
to compare distributions of virtual posteriors in different equilibria. The second
step shows that the introduction of private interests does not change the order
of any comparison.
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Before we start with the proof of the optimality of the equilibriumwe present
a lemma that establishes the existence and uniqueness of expertise bounds.

Lemma 3. For distributions of preference parameters such that there are both
types of partisans with positive probability, i.e. γ(0),γ(1)> 0, it holds that there
is exactly one tuple (b, b) ∈ [0,1]2 of expertise bounds that fulfills the conditions
in Proposition 3.

Proof. See Appendix 4.A.

Proof of the optimality of the Equilibrium in Proposition 3. We will show
that the equilibrium in Proposition 3 is optimal for the receiver. We proceed
in two steps. First, we introduce a technique that allows us to compare
equilibria in the common value case. We could have used this technique to
prove Proposition 1 but find the proof above more straight forward. Second,
we show that the comparison carries over to the case with partisans. More
concretely, we show that if an equilibrium in which advisors play the truthful
strategy is more informative than another one in the case without partisans, it
continues to be more informative than the other one in the presence of partisans.

The receiver bases her decision on the virtual posteriors q(ti) that she infers
frommessages ti of senders i= {1, ..., n}. The same set of virtual posteriors leads
to the same decision. The distribution of virtual posteriors q(ti) for sender i is
determined by the distribution of posteriors µ and the sender i’s strategy mi. In
what follows, we focus on the distributions of virtual posteriors.

Definition 4. Let µ be a distribution of posteriors and mi the strategy of sender i.
We denote the distribution of virtual posteriors of sender i by µγmi

and define it by
its cdf

Fγmi
(x) = P[q(ti) ≤ x],

where ti is sender i’s message. We suppress superscript γ in the common interests
case, i.e. we write µmi

and Fmi
if γ(λ0)= 1.

In the following we compare the virtual posterior distribution of the equilib-
rium in which advisors play the truthful strategy with virtual posterior distribu-
tions of other equilibria. We know from Proposition 1 that playing the truthful
strategy is part of the receiver optimal equilibrium for the common interests
case. Using the concept of virtual posterior distributions helps us generalize this
observation to the case with partisans.

We start with the analysis of the common interests case. Note that there
are other equilibria that lead to the same distribution of virtual posteriors as
in Proposition 1. Consequently, these equilibria induce the same ex-ante ex-
pected utility of the receiver. For example, consider strategies m̃i characterized
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by m̃i(pi,λi)= 1−mi(pi,λi) for senders i= {1, ..., n} and a strategy of the re-
ceiver in which she uses a weighting function w̃ characterized by w̃(x)= w(−x).
We select the equilibrium in which advisors play the truthful strategy as a rep-
resentative for all equilibria that induce this distribution of virtual posteriors.

Lemma 4. Let µ be a posterior distribution, m?i the truthful strategy, and m′i any
other strategy. Then it holds that µm?i

is more informative than µm′i
, i.e. µm?i

� µm′i
.

Proof. See Appendix 4.A.

The proof of Lemma 4 builds on the machinery of Blackwell (1953). If m?i is
the truthful strategy, any distribution µm′i

that is induced by another strategy m′i
can be constructed from the distribution µm?i

by an application of garblings. The
only way in which the virtual posterior distribution µm′i

can differ from µm?i
is

that a sender i might send message ti for two different posteriors pi and p′i. The
virtual posterior p(ti) is a weighted average of posteriors that induce sending
ti. Hence, strategy m′i is a garbling of m?i which implies that µm′i

is a garbling
of µm?i

. By Theorem 12.3.2 in Blackwell and Girshick (1979) (see Proposition
B in Appendix 4.B), the sender-wise comparison suffices to conclude that the
virtual posterior distribution q(t) in the equilibrium in which senders play
the truthful strategy is more informative than that in any other equilibrium.
Proposition 1 follows by Theorem 12.2.2 (4) in Blackwell and Girshick (1979)
(see Proposition C in Appendix 4.B), more informative distributions imply
higher ex-ante expected utility for the receiver.

In the last step we show that the argument generalizes to the case with
partisans. In particular this implies that the virtual posterior distribution µγm?i

is

more informative than any other distribution µγ
m′i
.

Lemma 5. Let µ be a posterior distribution, m?i a strategy in which advisors play
truthful, and m′i any other strategy. Then, if µm?i

is more informative than µm′i
it

follows that µγm?i
is more informative than µγ

m′i
, i.e.

µm?i
� µm′i

⇒ µ
γ

m?i
� µ

γ

m′i
.

Proof. See Appendix 4.A.

We have shown that the virtual posterior of sender i is most informative
if types with λi = λ0 play the truthful strategy. Again, by Theorem 12.3.2 in
Blackwell and Girshick (1979) (see Proposition B in Appendix 4.B) the sender-
wise comparison carries over to the overall information structure. By Theorem
12.2.2 (4) in Blackwell and Girshick (1979) (see Proposition C in Appendix 4.B)
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we conclude that there cannot be any better equilibrium for the receiver than
the equilibrium described in Proposition 3. This concludes the proof.

In the remainder of this article we use the equilibrium in Proposition 3 to
compare different distributions of types of senders with respect to the utility
of the receiver. Before we proceed we discuss two effects of partisans. The first
effect describes the cost of partisans with respect to the average individual pre-
cision. A partisan sends a message irrespective of his posterior. Thus, the in-
formation held by partisans does not find its way to the receiver. The average
individual precision decreases proportionally as the share of partisans increases,
i.e. π(µγ)= γ(λ0)π(µ). This effect would remain even if preference parame-
ters were publicly known. The second effect emerges because preferences are
private information. Partisans imitate well informed senders. This results in a
garbling of the most informative advisors with the noise of the partisans. The
virtual posterior distribution becomes less informative and average individual
precision remains constant.

Having solved for the optimal equilibrium the next subsection studies con-
sequences of the presence of private interests. We demonstrate that sufficiently
heterogeneous preferences can prevent any differentiating weighting of mes-
sages. Further, we show that the value of specialization vanishes and average
individual precision becomes more important as the share of partisans rises.

4.5.2 The E�ect of Private Interests

In this subsection we illustrate the effect of private interests on information ag-
gregation and the utility of the receiver. We begin with a result that states that
sufficiently many partisans can prevent transmission of any information that is
finer than the mere direction of the preferred alternative. With other words all
senders send one of only two messages in the optimal equilibrium. This small
message space can be interpreted as voting.

Proposition 4. Let µ be never ignorant. Then there exists c0, c1 ∈ (0, 1) with c0 +
c1 < 1 s.t. for all γ with γ(0)≥ c0, γ(1)≥ c1, and γ(λ0)> 0 the receiver forms
only two expected posteriors, i.e. voting is the most informative equilibrium.

Proof. See Appendix 4.A.

The proof of Proposition 4 exploits properties of the expertise bounds. We
find c0 (c1) such that the lower (upper) expertise bound is weakly greater
(smaller) than the highest (lowest) possible posterior that is smaller (greater)
than the prior. This means that all posteriors on one side of the prior get the
same weight. To guarantee that c0 + c1 < 1 we need to assume that µ is never
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(h) Virtual pmf with g(0) = g(1) = 0.125

Figure 4.4. Equilibrium weighting function and virtual probability mass functions for
probability mass function

ignorant. Note that if c0 + c1 = 1 all posteriors get the same weight w(p0) be-
cause all senders are partisans who do not send informative messages.

Figure 4.4 illustrates the effect of different levels of partisans. For all
panels the posterior distribution is µ with P

�

p= 1
20

�

= P
�

p= 19
20

�

= 1
40 ,

P
�

p= 1
5

�

= P
�

p= 4
5

�

= 3
40 , and P

�

p= 7
20

�

= P
�

p= 13
20

�

= 4
10 . This pmf is

symmetric around prior p0 =
1
2 . Panel (a) and (b) depict the case without

partisans. The presence of 1% partisans (Panel (c) and (d)) devalues the weight
of advisors with the most precise posteriors. 5% partisans (Panel (e) and (f))
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prevent the differentiation of advisors with the two most precise posteriors
on both sides of the prior. Any differentiation between advisors of one side of
the prior breaks down if the share of partisans is 25% (Panel (g) and (h)) or
more. Then, only the direction of the posterior can be transmitted. This case
corresponds to the situation in Proposition 4.

The next result points out that average individual precision becomes more
important as the share of partisans increases. Concretely, a posterior distribution
with higher average individual precision is more informative and therefore leads
to a higher utility of the receiver if the share of partisans is sufficiently high.

Proposition 5. Letµ and νwithπ(µ)> π(ν) be never ignorant posterior distribu-
tions with cdfs F and G, respectively. Then there exist c0, c1 ∈ (0, 1) with c0 + c1 < 1
s.t. for all γ with γ(0)≥ c0 and γ(1)≥ c1 and any number of senders n the ex-ante
expected utility of the receiver is greater under posterior distribution µ than under
ν.

Proof. See Appendix 4.A.

The proof of Proposition 5 builds on Proposition 4. Suppose there are suffi-
ciently many partisans so that voting is the optimal equilibrium for both distribu-
tions. The virtual posterior of any message of senders with the higher average
individual precision is more precise, i.e. further away from the prior p0. This
implies that the ex-ante utility of the sender is higher under the posterior distri-
bution with higher average individual precision.

Proposition 5 contrasts the observation on the value of specialization in the
common interests case in Section 4.4.2. Without partisans, a more specialized
distribution with lower average individual precision can be better for the receiver.
This statement is not true if the share of partisans sufficiently increases. Then, a
higher individual precision is all that matters and all value from specialization
is lost.

4.6 Summary and Discussion

We have studied information aggregation in a cheap talk game with multiple
senders who have differently precise information and heterogeneous prefer-
ences. We have three main findings. First, under common interests the receiver
can utilize all information of senders by discriminating messages based on their
informational content.

Second, private interests lead to an information loss that comes from two
effects. Senders with private interests do not communicate their information on
the state of the world to the receiver. Additionally, these senders imitate advisors
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with precise information and thereby add noise to the communication with the
receiver.

Third, if preferences are sufficiently heterogeneous voting becomes the
optimal equilibrium. Senders with private interests prevent transmission of in-
formation that is finer than the mere direction of the recommended alternative.
Further, average individual precision becomes more important as the share of
partisan increases.

In our analysis we assume that all senders are ex-ante symmetric. Posterior
and preference distributions do not differ across senders. However, in many im-
portant applications there is public information on the efficacy or preferences of
senders. In that case the receiver optimally takes that heterogeneity into account
and processes messages of heterogeneous senders accordingly. An interesting
question building on our analysis is how much efficiency the receiver loses if
he is restricted to anonymous procedures. Azrieli (2018a) studies this question
in a setting without partisans and gives comparative statics on the size of the
inefficiency.

The information loss of private interests is not only caused by wasting the in-
formation of partisans. Another significant loss is due to the indistinguishability
of partisans and advisors. This deteriorates trust in the most informed advisors.
Our analysis might provide a rationale for professional ethics and codes of con-
duct. These require advisors to inform their clients of all possible conflicts of
interest. This is necessary to retain trust in professions in general.

The attempt of third parties to influence political decision has been studied in
the literature. Buchanan, Tollison, and Tullock (1980) and Baye, Kovenock, and
De Vries (1993) model lobbying as a tournament in which parties pay money to
politicians that proportionally increases the probability of influencing the deci-
sion. The literature on cheap talk describes an influence over selective informa-
tion provision as discussed in Section 4.2. In our model there is uncertainty on
the preferences of senders. In future research our model can be extended to two
lobby groups who try to optimally manipulate the set of senders. Then, lobbyists
do not send information by themselves but manipulate experts which creates an
uncertainty on the motives of senders that affects the decision of the receiver.
The endogeneity of the preference distribution offers a third interpretation of a
more indirect influence of lobbyists and opens a set of interesting questions.
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4.A Appendix: Proofs

Proof of Proposition 1. As noted in the text, in the following we use the proof
technique of Theorem 1 in Nitzan and Paroush (1982) who derive the optimal
non-strategic processing of signals with a symmetric prior p0 =

1
2 .

In the main text we use for random variables and their realizations the same
notation. For this proof it is useful to introduce a separate notation. We use
upper case characters for random variables and lower case characters for their
realizations.

The receiver processes messages t to update her posterior. She prefers the
action that yields the higher expected utility given her virtual posterior q(t).
More precisely, an optimal decision rule selects action 1 if

λ0P[ω = 1|T = t] > (1 − λ0)P[ω = 0|T = t]

⇔ λ0
P[P = p|ω = 1] · P[ω = 1]

P[P = p]
> (1 − λ0)

P[P = p|ω = 0] · P[ω = 0]
P[P = p]

⇔ λ0p0

∏

i

P[Pi = pi|ω = 1] > (1 − λ0)(1 − p0)
∏

i

P[Pi = pi|ω = 0]

⇔ λ0p0

∏

i

pi

p0
> (1 − λ0)(1 − p0)

∏

i

1 − pi

1 − p0

⇔
∏

i

�

pi

1 − pi

1 − p0

p0

�

>
1 − λ0

λ0

1 − p0

p0

⇔
∑

i

�

ln
pi

1 − pi
− ln

p0

1 − p0

�

> −
�

ln
λ0

1 − λ0
+ ln

p0

1 − p0

�

.

For the first equivalence we apply Bayes’ rule and exploit that senders play
the truthful strategy. In the second step we use the conditional independence
of signals. We arrive at the fourth equation by applying Bayes’ rule once again.
The fifth equation is a simple reformulation of the fourth. Finally, we obtain the
last equation by taking the logarithm on both sides. The resulting decision rule
can be interpreted as a weighted majority rule with weighting function

w(ti) =

(

ln ti
1−ti
− ln p0

1−p0
if ti ∈ P

0 else,

and threshold τ= −
�

ln λ0
1−λ0

+ ln p0
1−p0

�

.
It is optimal for senders to play the truthful strategy since senders and the

receiver have the same utility function. With the truthful strategy senders can
transmit all available information. Any beneficial transformation of messages
can be done by the receiver.
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Lemma 6. For posterior distribution µ with cdf F and preference distribution γ,
the lower expertise bound b in the receiver optimal equilibrium is determined by

γ(0)
�

p0 − b
�

= γ(λ0) ·
∫ b

0

F(x) dx,

and the upper expertise bound b is determined by

γ(1)
�

b − p0

�

= γ(λ0) ·
∫ 1

b
1 − F(x) dx.

Proof. To guarantee that the behavior of 0-partisans in Proposition 3 is actually
a strategy, the probabilities of sending any message must be weakly greater than
0 and add up to 1, i.e.

γ(λ0)µ(ti)(b − ti)

γ(0)(p0 − b)
≥ 0 for all ti ≤ b ∧ ti ∈ P , and

∑

ti≤b∧ti∈P

γ(λ0)µ(ti)(b − ti)

γ(0)(p0 − b)
= 1.

The first condition is fulfilled for all ti ≤ b. The second condition implies that

γ(0)(p0 − b) =γ(λ0)

∫ b

0

(b − x)µ(x)dx

=γ(λ0) · F(b) · b − γ(λ0) ·

�

F(b) · b −
∫ b

0

F(x)dx

�

=γ(λ0) ·
∫ b

0

F(x)dx,

where we obtain the second equation by integration by parts.
The calculation for the upper expertise bound is analogous.

Proof of Lemma 3. By Lemma 6 the characterization of the lower expertise
bound b is given by

γ(0)
�

p0 − b
�

= γ(λ0) ·
∫ b

0

F(x) dx.

Note that the left side of the equation is strictly decreasing in b ∈ [0, p0] and
is 0 only if b= p0. The right side is weakly increasing in b and is 0 for b= 0.
Further, both sides are continuous in b. Thus, there is a unique b that fulfills the
equation.

The proof for the upper expertise bound is analogous.
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Proof of the equilibrium in Proposition 3. As in the proof of Proposition 1, we
use upper case characters for random variables and lower case characters for
their realizations.

We start to calculate the virtual posterior q(ti) of the receiver after receiving
message ti. The only senders that send messages within the expertise bounds
are advisors. Thus q(ti)= ti for ti ∈ (b, b)∩P . For messages ti ≤ b with ti ∈ P
the virtual posterior of the receiver is

q(ti) = P [ω = 1|Ti = ti]

=

∑

λ∈{0,λ0}
P [Ti = ti|ω = 1 ∧ Λ = λ]P[ω = 1]P [Λ = λ]

P [Ti = ti]

=
γ(λ0)µ(ti)ti + γ(0)

γ(λ0)µ(ti)(b−ti)
γ(0)(p0−b) p0

γ(λ0)µ(ti) + γ(0)
γ(λ0)µ(ti)(b−ti)
γ(0)(p0−b)

= b.

The calculation for the virtual posterior of messages ti ≤ b with ti ∈ P is q(ti)=
b by an analogous calculation. Thus, the receiver’s on equilibrium beliefs are
consistent with Bayes updating.

The technique of Nitzan and Paroush (1982) and the proof of Proposition 1
teach us how to process a set of (virtual) posteriors optimally. Again, the best
response of the receiver can be interpreted as a weighted majority rule with
weighting function

w(x) = ln
q(x)

1 − q(x)
− ln

p0

1 − p0

=























ln
b

1−b − ln p0
1−p0

x ∈ P ∧ x ≤ b

ln x
1−x − ln p0

1−p0
x ∈ P ∧ b ≤ x ≤ b

ln b
1−b
− ln p0

1−p0
x ∈ P ∧ b ≤ x

0 else

and threshold τ= −
�

ln λ0
1−λ0

+ ln p0
1−p0

�

.

We proceed by proving that senders play best responses. Partisans maximize
the probability that the receiver takes the action that matches their preference
parameter. Given the strategy of advisors and the receiver they send a message
with maximal weight in the preferred direction. In the equilibrium strategy 0-
(1-)partisans mix over messages with weight ln b

1−b
− ln p0

1−p0
(ln b

1−b − ln p0
1−p0

)
which is the highest (lowest) weight assigned by the receiver. Hence, these par-
tisans play best responses.
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We proceed to analyze best responses of advisors. Suppose an advisor is
pivotal, i.e. two different messages of his induce different actions of the receiver.
The advisor and the receiver have the same utility function and prefer the same
action given they have the same information. Thus, the best the advisor can do
is to reveal all his information to the receiver who processes it optimally. If the
advisor is not pivotal any message is a best response.

Taken together, the strategies and updating in Proposition 3 are a perfect
Bayesian equilibrium.

Proof of Lemma 4. Let µm?i
be the virtual posterior distribution under the truth-

ful strategy m?i . Any distribution µm′i
that is induced by another strategy m′i can

be constructed from µm?i
by an application of garblings. We do not restrict strate-

gies to use only a finite set of messages. Therefore, we apply a result from Black-
well (1953) that generalizes Theorem 12.2.2 in Blackwell and Girshick (1979)
(see Proposition A in Appendix 4.B) to the case with continuous signals. Thereby,
we conclude that µm?i

is more informative than µm′i
.

Lemma 7. Let µ and ν with µ� ν be posterior distributions with cdfs F and G,
respectively. Let γ be the distribution of preference parameters. Then, the lower
(upper) expertise bound bµ of µ is weakly smaller (greater) or equal than the lower
(upper) expertise bound bν of ν in the optimal equilibria with partisans.

Proof of Lemma 7. Suppose that bν < bµ and use Lemma 6 to see that

γ(0)
�

p0 − bν
�

= γ(λ0) ·
∫ bν

0

G(x)dx

≤ γ(λ0) ·
∫ bν

0

F(x)dx

≤ γ(λ0) ·
∫ bµ

0

F(x)dx = γ(0)
�

p0 − bµ
�

.

Hence bµ ≤ bν, which is a contradiction. The proof for the upper expertise bound
is analogous.

Proof of Lemma 5. To simplify notation we denote µm?i
by µ, µm′i

by ν, µγm?i
by

µγ, and µγ
m′i

by νγ. Further, we denote Fm?i
by F, Fm′i

by G, Fγm?i
by Fγ, Fγ

m′i
by Gγ.

To show that µγ is more informative than νγ we show that

∫ y

0

Gγ(x)dx ≤
∫ y

0

Fγ(x)dx for all y ∈ [0, 1].
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By Lemma 7 it holds that bµ ≤ bν and bµ ≥ bν. This allows us to check the in-

equality separately on the three intervals
�

0, bν
�

,
�

bν, bν
�

and
�

bν, 1
�

.
For all y ∈

�

0, bν
�

it holds that

∫ y

0

Gγ(x)dx = 0 ≤
∫ y

0

Fγ(x)dx.

For all y ∈
�

bν, bν
�

it holds that

∫ y

0

Gγ(x)dx =

∫ y

bν

γ(0) + γ(λ0)G(x)dx

= γ(0)(y − bν) + γ(λ0)

∫ y

0

G(x)dx − γ(λ0)

∫ bν

0

G(x)dx

= γ(0)(y − p0) + γ(λ0)

∫ y

0

G(x)dx

≤ γ(0)(y − p0) + γ(λ0)

∫ y

0

F(x)dx

=

∫ y

0

Fγ(x)dx.

The first equality follows by the definition of virtual posteriors and the equilib-
rium strategies. For the third equality we apply Lemma 6. The inequality follows
by the assumption that µ� ν.

Since Gγ(x)= 1 for x ≥ bν it follows that for all y ∈
�

bν, 1
�

it holds that

∫ 1

y
Gγ(x)dx ≥

∫ 1

y
Fγ(x)dx.

The expected value of both distributions is consistent with the common prior, i.e.
∫ 1

0 Fγ(x)dx =
∫ 1

0 Gγ(x)dx = 1− p0. Thus, we conclude that

∫ y

0

Gγ(x)dx ≤
∫ y

0

Fγ(x)dx,

for all y ∈ [bν, 1], which concludes the proof.

Proof of Proposition 4. We prove the proposition in two steps. We start to show
that by monotonicity and continuity of b and b there exists c0, c1 ∈ (0,1) such
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that the receiver can only form two expected posteriors in the optimal equilib-
rium. Then, we prove that c0 and c1 are such that c0 + c1 < 1. For both parts we
use Lemma 6 that characterizes the lower expertise bound by the equation

γ(0)
�

p0 − b
�

= γ(λ0) ·
∫ b

0

F(x)dx.

The lower expertise bound can take any value in b ∈ [0, max{x : F(x)= 0}]
if γ(0)= 0. Further, it is p0 if γ(0)= 1. Rewriting the above equation yields

γ(0)
γ(λ0)

=

∫ b
0 F(x)dx

p0 − b
(4.2)

which exhibits that b is monotonically increasing in γ(0), monotonically decreas-
ing in γ(λ0) and continuous in γ(0),γ(λ0) ∈ (0, 1).

Since µ is never ignorant there exists a highest type strictly smaller than
the prior, pL :=max{x|x < p0 ∧ x ∈ P }. The proposition is fulfilled if the lower
expertise bound equals this type b= pL. Continuity and monotonicity of b imply
that the right hand side of Equation (4.2) is positive and finite and hence γ(0)<
1 if b= pL. The proof for the upper part with type pH :=min{x|x > p0 ∧ x ∈ P }
is analogous so that constants c0, c1 ∈ (0,1) are implicitly given by

c0

�

p0 − pL

�

= γ(λ0) ·
∫ pL

0

F(x)dx

and c1

�

pH − p0

�

= γ(λ0) ·
∫ 1

pH

1 − F(x)dx. (4.3)

To see that c0 + c1 < 1 divide Equations (4.3) by
�

p0 − pL

�

and
�

pH − p0

�

,
respectively. Adding both equations yields

c0 + c1 = γ(λ0) ·

∫ pL

0 F(x)dx

p0 − pL
+ γ(λ0) ·

∫ 1
pH

1 − F(x)dx

pH − p0
.

Since
∫ pL

0 F(x)dx
p0−pL

,
∫ 1

pH
1−F(x)dx

pH−p0
> 0, it follows that γ(λ0)> 0. This implies that c0 +

c1 = γ(0)+ γ(1)= 1− γ(λ0)< 1 which completes the proof.

Proof of Proposition 5. Let cµ0 , cν0 ∈ (0, 1) constants from Proposition 4 for dis-
tributions µ and ν with cdfs F and G, respectively. Define c0 =max

�

cµ0 , cν0
	

as
the smallest constant such that both virtual posteriors µγ and νγ have only two
mass points. Now we compare the resulting lower expertise bounds bµ

γ

and bν
γ

.
The smaller the lower expertise bound the better the signal. Thus, it is sufficient
to show that bµ

γ

< bν
γ

.
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By Proposition 4 and Lemma 6 it follows that

bµ
γ

= p0 −
γ(λ0)
γ(0)

∫ p0

0

F(x)dx,

Lemma 8 implies that bµ
γ

< bν
γ

which completes the proof for the lower
expertise bound.

The proof for the upper expertise bounds is analogous. Further, c0 + c1 < 1
remains to be true despite taking the maximum and minimum, respectively, by
the same reason as in the proof of Proposition 4.

Lemma 8. Let µ and ν be posterior distributions with cdfs F and G, respectively.
Then, π(µ)> π(ν) if and only if

∫ p0

0

F(x)dx >

∫ p0

0

G(x)dx and
∫ 1

p0

1 − F(x)dx >

∫ 1

p0

1 − G(x)dx.

Proof. We rewrite π(µ) until we arrive at an expression from which the result
is immediate:

π(µ)

= E [|pi − p0|]

=

∫ 1

0

|x − p0| µ(x)dx

=

∫ p0

0

(p0 − x) µ(x)dx +

∫ 1

p0

(x − p0) µ(x)dx

= p0 · F(p0) −
∫ p0

0

x µ(x)dx +

�

p0 −
∫ p0

0

x µ(x)dx

�

− p0 ·
�

1 − F(p0)
�

= 2

�

p0 · F(p0) −
∫ p0

0

x µ(x)dx

�

= 2

∫ p0

0

F(x)dx.

The fourth equation follows from the common prior p0 =
∫ 1

0 x µ(x)dx and the
last equality from integration by parts.

The derivation of the second inequality is analogous.



4.B Appendix: Blackwell | 89

4.B Appendix: Blackwell

In this part of the Appendix we introduce tools that allow us to make use of Def-
inition 1. This allows us to compare the receiver’s utility with different posterior
distributions of senders. All methods and results in this subsection are borrowed
from Chapter 12 in Blackwell and Girshick (1979). In order to apply their ma-
chinery to our problem we slightly adjust our setting and translate our notation
into theirs.

The following results rely on the assumption that the action space of the
receiver is a closed bounded convex subset of R. To fulfill this assumption we
extend the action space of the receiver from {0, 1} to ∆{0,1} so that her action
space is the interval [0, 1]. An action a ∈∆{0,1} corresponds to the probability
that the receiver takes action 1. Note that we can use this extended action space
throughout the whole paper without changing any result. In all statements on
best responses of the receiver one of the two extreme actions {0, 1} ⊂∆{0,1} is
optimal. We use the action space {0,1} in the main text of the paper to simplify
the exposition.

To present the next results it is also helpful to introduce some of the no-
tation of Blackwell and Girshick (1979)⁸ For a posterior distribution µ we de-
fine a 2×N matrix P, where N = |P | is the number of possible posteriors. The
rows represent the two states of the world 0 and 1. Each column represents
one possible posterior. The value Pij is the probability of observing the posterior
represented by column j in state i. Note that matrix P is Markov which means
that Pij > 0 for all i and j and that

∑N
j=1 Pij = 1 for all i. With the notation we

are equipped to remind the reader of Theorem 12.2.2 in Blackwell and Girshick
(1979).

Proposition A (Blackwell and Girshick (1979)). Let P and Q be two 2×N1 and
2×N2 Markov matrices of posterior distributions µ and ν. µ is more informative
than ν if and only if there is an N1 ×N2 Markov matrix M with PM = Q.

Matrix M is said to garble information by transforming matrix P to Q.
This means that distribution ν can be constructed from distribution µ. This
interpretation justifies the statement that µ is more informative than ν.

The next result generalizes the previous proposition by allowing to compare
sets of distributions. Each sender sends a conditionally independent posterior.
Consider two sets of senders with different posterior distributions. Then, Theo-
rem 12.3.2 in Blackwell and Girshick (1979) allows us to compare the informa-
tion of both groups in the following sense.

⁸ We also enjoyed reading the notes of Borgers (2009) on Chapter 12 of Blackwell and Girshick
(1979) and borrow some of his notation.
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Proposition B (Blackwell and Girshick (1979)). Let (µi)
n
i=1 and (νi)

n
i=1 be two

sets of posterior distributions. Suppose that µi is more informative than νi for every
i. Then, the combination of posterior distributions (µi)

n
i=1 is more informative than

(νi)
n
i=1.

The proposition allows to compare the information that is transmitted to
the receiver from different distributions. Theorem 12.2.2 (4) in Blackwell and
Girshick (1979) allows us to use this result for a statement on the utility of the
receiver.

Proposition C (Blackwell and Girshick (1979)). Let µ and ν be two posterior
distributions such that µ is more informative than ν. Then, for every continuous
convex function φ : [0,1]→ R we have

Eµ [φ(x)] ≥ Eµ′ [φ(x)] .

Note that the utility function u?(q) is convex in q. Thus, if there are two pos-
terior distributions with µ� ν the proposition implies that the expected utility
for the receiver with distribution µ is at least as high as with distribution ν.
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